Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5519
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGöçeri, Evgin-
dc.contributor.authorÜnlü, Mehmet Zübeyir-
dc.contributor.authorDicle, Oğuz-
dc.date.accessioned2017-05-16T08:35:03Z
dc.date.available2017-05-16T08:35:03Z
dc.date.issued2015
dc.identifier.citationGöçeri, E., Ünlü, M. Z., and Dicle, O. (2015). A comparative performance evaluation of various approaches for liver segmentation from SPIR images. Turkish Journal of Electrical Engineering and Computer Sciences, 23(3), 741-768. doi:10.3906/elk-1304-36en_US
dc.identifier.issn1300-0632
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttp://doi.org/10.3906/elk-1304-36-
dc.identifier.urihttp://hdl.handle.net/11147/5519-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/168945-
dc.description.abstractDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task because of the similar intensity values between adjacent organs, the geometrically complex liver structure, and injection of contrast media. Most importantly, a high anatomical variability of a healthy or diseased liver is a major challenge in defining the exact boundaries of the liver. Several artifacts of pulsation, motion, and partial volume effects are also among the variety of factors that make automatic liver segmentation difficult. In this paper, we present an overview of liver segmentation methods in magnetic resonance images and show comparative results of seven different pseudo-3D liver segmentation approaches chosen from deterministic (K-means-based), probabilistic (Gaussian model-based), supervised neural network (multilayer perceptron-based), and deformable model-based (level set) segmentation methods. The results of quantitative and qualitative analyses using sensitivity, specificity, and accuracy metrics show that the multilayer perceptron-based approach and a level set-based approach, both of which use distance regularization terms and signed pressure force function, are the most successful methods for liver segmentation from spectral presaturation inversion recovery (SPIR) images. However, the multilayer perceptron-based segmentation method has a higher computational cost. The automatic method using the distance regularized level set evolution with signed pressure force function avoids the sensitivity of a user-defined initial contour for each slice, gives the most efficient results for liver segmentation after the preprocessing steps, and also requires less computational time.en_US
dc.language.isoenen_US
dc.publisherTürkiye Klinikleri Journal of Medical Sciencesen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGaussian mixture modelen_US
dc.subjectK-meansen_US
dc.subjectLiver segmentationen_US
dc.subjectMagnetic resonance imageen_US
dc.subjectMultilayer perceptronen_US
dc.subjectImage segmentationen_US
dc.titleA comparative performance evaluation of various approaches for liver segmentation from SPIR imagesen_US
dc.typeArticleen_US
dc.authoridTR42462en_US
dc.institutionauthorGöçeri, Evgin-
dc.institutionauthorÜnlü, Mehmet Zübeyir-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume23en_US
dc.identifier.issue3en_US
dc.identifier.startpage741en_US
dc.identifier.endpage768en_US
dc.identifier.wosWOS:000352476800010en_US
dc.identifier.scopus2-s2.0-84928652367en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3906/elk-1304-36-
dc.relation.doi10.3906/elk-1304-36en_US
dc.coverage.doi10.3906/elk-1304-36en_US
dc.identifier.trdizinid168945en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5519.pdfMakale5.09 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

25
checked on Oct 26, 2024

Page view(s)

4,054
checked on Nov 18, 2024

Download(s)

192
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.