Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5499
Title: | Energy Localization in Maximally Entangled Two- and Three-Qubit Phase Space | Authors: | Pashaev, Oktay Gürkan, Zeynep Nilhan |
Keywords: | Quantum entanglement Average energy Complex planes Hamiltonians Energy localization Mathematical operators |
Publisher: | IOP Publishing Ltd. | Source: | Pashaev, O. and Gürkan, Z. N. (2012). Energy localization in maximally entangled two- and three-qubit phase space. New Journal of Physics, 14. doi:10.1088/1367-2630/14/6/063007 | Abstract: | Motivated by theMobius transformation for symmetric points under the generalized circle in the complex plane, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. In terms of these states, we construct the maximally entangled complete set of two-qubit coherent states, which in the limiting cases reduces to the Bell basis. A specific property of our symmetric coherent states is that they never become unentangled for any value of from the complex plane. Entanglement quantifications of our states are given by the reduced density matrix and the concurrence determinant, and it is shown that our basis is maximally entangled. Universal one- and twoqubit gates in these new coherent state basis are calculated. As an application, we find the Q symbol of the XY Z model Hamiltonian operator H as an average energy function in maximally entangled two- and three-qubit phase space. It shows regular finite-energy localized structure with specific local extremum points. The concurrence and fidelity of quantum evolution with dimerization of double periodic patterns are given. | URI: | http://dx.doi.org/10.1088/1367-2630/14/6/063007 http://hdl.handle.net/11147/5499 |
ISSN: | 1367-2630 |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.