Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKöktürk, Başak Esin-
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2017-05-12T13:09:19Z
dc.date.available2017-05-12T13:09:19Z
dc.date.issued2016
dc.identifier.citationKöktürk, B. E., and Karaçalı, B. (2016). Annealing-based model-free expectation maximisation for multi-colour flow cytometry data clustering. International Journal of Data Mining and Bioinformatics, 14(1), 86-99. doi:10.1504/IJDMB.2016.073365en_US
dc.identifier.issn1748-5673
dc.identifier.issn1748-5673-
dc.identifier.urihttp://doi.org/10.1504/IJDMB.2016.073365
dc.identifier.urihttp://hdl.handle.net/11147/5494
dc.description.abstractThis paper proposes an optimised model-free expectation maximisation method for automated clustering of high-dimensional datasets. The method is based on a recursive binary division strategy that successively divides an original dataset into distinct clusters. Each binary division is carriedout using a model-free expectation maximisation scheme that exploits the posterior probability computation capability of the quasi-supervised learningalgorithm subjected to a line-search optimisation over the reference set size parameter analogous to a simulated annealing approach. The divisions arecontinued until a division cost exceeds an adaptively determined limit. Experiment results on synthetic as well as real multi-colour flow cytometrydatasets showed that the proposed method can accurately capture the prominent clusters without requiring any prior knowledge on the number of clusters ortheir distribution models.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.relation.ispartofInternational Journal of Data Mining and Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClusteringen_US
dc.subjectData miningen_US
dc.subjectFlow cytometry data analysisen_US
dc.subjectBioinformaticsen_US
dc.subjectSimulated Annealing algorithmen_US
dc.titleAnnealing-based model-free expectation maximisation for multi-colour flow cytometry data clusteringen_US
dc.typeArticleen_US
dc.authoridTR116500en_US
dc.authoridTR11527en_US
dc.institutionauthorKöktürk, Başak Esin-
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.identifier.startpage86en_US
dc.identifier.endpage99en_US
dc.identifier.wosWOS:000366136100006en_US
dc.identifier.scopus2-s2.0-84948799051en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1504/IJDMB.2016.073365-
dc.relation.doi10.1504/IJDMB.2016.073365en_US
dc.coverage.doi10.1504/IJDMB.2016.073365en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5494.pdfMakale1.9 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

760
checked on Nov 18, 2024

Download(s)

326
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.