Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2017-04-28T08:58:07Z-
dc.date.available2017-04-28T08:58:07Z-
dc.date.issued2016-05-
dc.identifier.citationKaraçalı, B. (2016). An efficient algorithm for large-scale quasi-supervised learning. Pattern Analysis and Applications, 19(2), 311-323. doi:10.1007/s10044-014-0401-yen_US
dc.identifier.issn1433-7541-
dc.identifier.issn1433-755X-
dc.identifier.urihttp://doi.org/10.1007/s10044-014-0401-y-
dc.identifier.urihttp://hdl.handle.net/11147/5433-
dc.description.abstractWe present a novel formulation for quasi-supervised learning that extends the learning paradigm to large datasets. Quasi-supervised learning computes the posterior probabilities of overlapping datasets at each sample and labels those that are highly specific to their respective datasets. The proposed formulation partitions the data into sample groups to compute the dataset posterior probabilities in a smaller computational complexity. In experiments on synthetic as well as real datasets, the proposed algorithm attained significant reduction in the computation time for similar recognition performances compared to the original algorithm, effectively generalizing the quasi-supervised learning paradigm to applications characterized by very large datasets.en_US
dc.description.sponsorshipEuropean Union (PIRG03-GA-2008-230903)en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofPattern Analysis and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLarge-scale pattern recognitionen_US
dc.subjectNearest neighbor ruleen_US
dc.subjectPosterior probability estimationen_US
dc.subjectQuasi-supervised learningen_US
dc.subjectTransductive inferenceen_US
dc.titleAn efficient algorithm for large-scale quasi-supervised learningen_US
dc.typeArticleen_US
dc.authoridTR11527en_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage311en_US
dc.identifier.endpage323en_US
dc.identifier.wosWOS:000374172600002en_US
dc.identifier.scopus2-s2.0-84905325287en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s10044-014-0401-y-
dc.relation.doi10.1007/s10044-014-0401-yen_US
dc.coverage.doi10.1007/s10044-014-0401-yen_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5433.pdfMakale673.53 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

658
checked on Nov 25, 2024

Download(s)

262
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.