Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5422
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alizade, Rafail | - |
dc.contributor.author | Büyükaşık, Engin | - |
dc.contributor.author | Er, Noyan | - |
dc.date.accessioned | 2017-04-27T08:50:00Z | - |
dc.date.available | 2017-04-27T08:50:00Z | - |
dc.date.issued | 2014-07 | - |
dc.identifier.citation | Alizade, R., Büyükaşik, E., and Er, N. (2014). Rings and modules characterized by opposites of injectivity. Journal of Algebra, 409, 182-198. doi:10.1016/j.jalgebra.2014.03.027 | en_US |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.issn | 1090-266X | - |
dc.identifier.uri | http://doi.org/10.1016/j.jalgebra.2014.03.027 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5422 | - |
dc.description.abstract | In a recent paper, Aydoǧdu and López-Permouth have defined a module M to be N-subinjective if every homomorphism N→M extends to some E(N)→M, where E(N) is the injective hull of N. Clearly, every module is subinjective relative to any injective module. Their work raises the following question: What is the structure of a ring over which every module is injective or subinjective relative only to the smallest possible family of modules, namely injectives? We show, using a dual opposite injectivity condition, that such a ring R is isomorphic to the direct product of a semisimple Artinian ring and an indecomposable ring which is (i) a hereditary Artinian serial ring with J2 = 0; or (ii) a QF-ring isomorphic to a matrix ring over a local ring. Each case is viable and, conversely, (i) is sufficient for the said property, and a partial converse is proved for a ring satisfying (ii). Using the above mentioned classification, it is also shown that such rings coincide with the fully saturated rings of Trlifaj except, possibly, when von Neumann regularity is assumed. Furthermore, rings and abelian groups which satisfy these opposite injectivity conditions are characterized. | en_US |
dc.description.sponsorship | TUBITAK | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc. | en_US |
dc.relation.ispartof | Journal of Algebra | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artinian serial | en_US |
dc.subject | Fully saturated | en_US |
dc.subject | Injective | en_US |
dc.subject | Subinjective | en_US |
dc.subject | QF ring | en_US |
dc.title | Rings and modules characterized by opposites of injectivity | en_US |
dc.type | Article | en_US |
dc.authorid | TR130906 | en_US |
dc.institutionauthor | Büyükaşık, Engin | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 409 | en_US |
dc.identifier.startpage | 182 | en_US |
dc.identifier.endpage | 198 | en_US |
dc.identifier.wos | WOS:000349811300008 | en_US |
dc.identifier.scopus | 2-s2.0-84898916753 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.jalgebra.2014.03.027 | - |
dc.relation.doi | 10.1016/j.jalgebra.2014.03.027 | en_US |
dc.coverage.doi | 10.1016/j.jalgebra.2014.03.027 | en_US |
local.message.claim | 2022-06-06T16:29:21.575+0300 | * |
local.message.claim | |rp00850 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
15
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
16
checked on Nov 9, 2024
Page view(s)
302
checked on Nov 18, 2024
Download(s)
512
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.