Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlizade, Rasim-
dc.contributor.authorCan, Fatih Cemal-
dc.contributor.authorKilit, Özgür-
dc.date.accessioned2017-04-20T13:57:42Z
dc.date.available2017-04-20T13:57:42Z
dc.date.issued2013
dc.identifier.citationAlizade, R., Can, F. C., and Kilit, Ö. (2013). Least square approximate motion generation synthesis of spherical linkages by using Chebyshev and equal spacing. Mechanism and Machine Theory, 61, 123-135. doi:10.1016/j.mechmachtheory.2012.10.009en_US
dc.identifier.issn0094-114X
dc.identifier.issn0374-1052-
dc.identifier.issn0094-114X-
dc.identifier.urihttp://doi.org/10.1016/j.mechmachtheory.2012.10.009
dc.identifier.urihttp://hdl.handle.net/11147/5369
dc.description.abstractIn this paper, approximate motion synthesis of spherical linkages is presented. Rigid body guidance of a spherical four-bar mechanism is performed by a spherical RR open chain. In the first step, position of a point on rigid body and orientation of a rigid body on a unit sphere are described. Synthesizing function of spherical dyad is derived by means of using unit vectors that describe location of two revolute joints and tip point. Being based on the theory of function approximation and besides the linearization of nonlinear synthesis equations by using superposition method, the design procedure for real solutions of fourth order polynomial equation is developed. In the second step, approximate motion generation synthesis of spherical dyad is presented by using least-square approximation. Chebyshev spacing and equal spacing are used in the determination of poses. In the final step, two numerical examples are given to show how error graph is varied in terms of selected poses. The spherical motion generation synthesis of spherical four-bar mechanism is obtained by the combination of the two real solutions of the synthesis of two spherical dyads. © 2012 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofMechanism and Machine Theoryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectApproximate motion synthesisen_US
dc.subjectRigid body guidanceen_US
dc.subjectSpherical dyaden_US
dc.subjectSpherical four-bar mechanismen_US
dc.subjectSpheresen_US
dc.titleLeast square approximate motion generation synthesis of spherical linkages by using Chebyshev and equal spacingen_US
dc.typeArticleen_US
dc.institutionauthorAlizade, Rasim-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume61en_US
dc.identifier.startpage123en_US
dc.identifier.endpage135en_US
dc.identifier.wosWOS:000314011700008en_US
dc.identifier.scopus2-s2.0-84869862206en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.mechmachtheory.2012.10.009-
dc.relation.doi10.1016/j.mechmachtheory.2012.10.009en_US
dc.coverage.doi10.1016/j.mechmachtheory.2012.10.009en_US
local.message.claim2022-06-17T15:32:57.849+0300*
local.message.claim|rp03053*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5369.pdfMakale922.44 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 29, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 23, 2024

Page view(s)

332
checked on Dec 2, 2024

Download(s)

596
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.