Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5340
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tayfur, Gökmen | - |
dc.contributor.author | Karimi, Yashar | - |
dc.contributor.author | Singh, Vijay P. | - |
dc.date.accessioned | 2017-04-19T06:28:13Z | - |
dc.date.available | 2017-04-19T06:28:13Z | - |
dc.date.issued | 2013-05 | - |
dc.identifier.citation | Tayfur, G., Karimi, Y., and Singh, V.P. (2013). Principle component analysis in conjuction with data driven methods for sediment load prediction. Water Resources Management, 27(7), 2541-2554. doi:10.1007/s11269-013-0302-7 | en_US |
dc.identifier.issn | 0920-4741 | - |
dc.identifier.issn | 1573-1650 | - |
dc.identifier.uri | https://doi.org/10.1007/s11269-013-0302-7 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5340 | - |
dc.description.abstract | This study investigates sediment load prediction and generalization from laboratory scale to field scale using principle component analysis (PCA) in conjunction with data driven methods of artificial neural networks (ANNs) and genetic algorithms (GAs). Five main dimensionless parameters for total load are identified by using PCA. These parameters are used in the input vector of ANN for predicting total sediment loads. In addition, nonlinear equations are constructed, based upon the same identified dimensionless parameters. The optimal values of exponents and constants of the equations are obtained by the GA method. The performance of the so-developed ANN and GA based methods is evaluated using laboratory and field data. Results show that the expert methods (ANN and GA), calibrated with laboratory data, are capable of predicting total sediment load in field, thus showing their transferability. In addition, this study shows that the expert methods are not transferable for suspended load, perhaps due to insufficient laboratory data. Yet, these methods are able to predict suspended load in field, when trained with respective field data. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Water Resources Management | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Principle component analysis | en_US |
dc.subject | Sediment load | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Transferability | en_US |
dc.title | Principle component analysis in conjuction with data driven methods for sediment load prediction | en_US |
dc.type | Article | en_US |
dc.authorid | TR2054 | en_US |
dc.institutionauthor | Tayfur, Gökmen | - |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.startpage | 2541 | en_US |
dc.identifier.endpage | 2554 | en_US |
dc.identifier.wos | WOS:000318004800039 | en_US |
dc.identifier.scopus | 2-s2.0-84876429805 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s11269-013-0302-7 | - |
dc.relation.doi | 10.1007/s11269-013-0302-7 | en_US |
dc.coverage.doi | 10.1007/s11269-013-0302-7 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
30
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
28
checked on Nov 9, 2024
Page view(s)
274
checked on Nov 18, 2024
Download(s)
1,194
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.