Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5335
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKompil, Mert-
dc.contributor.authorÇelik, Hüseyin Murat-
dc.date.accessioned2017-04-18T12:41:44Z
dc.date.available2017-04-18T12:41:44Z
dc.date.issued2013-03
dc.identifier.citationKompil, M., and Çelik, H.M. (2013). Modelling trip distribution with fuzzy and genetic fuzzy systems. Transportation Planning and Technology, 36(2), 170-200. doi:10.1080/03081060.2013.770946en_US
dc.identifier.issn0308-1060
dc.identifier.issn0308-1060-
dc.identifier.issn1029-0354-
dc.identifier.urihttp://doi.org/10.1080/03081060.2013.770946
dc.identifier.urihttp://hdl.handle.net/11147/5335
dc.description.abstractThis paper explores the potential capabilities of fuzzy and genetic fuzzy system approaches in urban trip distribution modelling with some new features. First, a simple fuzzy rule-based system (FRBS) and a novel genetic fuzzy rule-based system [GFRBS: a fuzzy system improved by a knowledge base learning process with genetic algorithms (GAs)] are designed to model intra-city passenger flows for Istanbul. Subsequently, their accuracy, applicability and generalizability characteristics are evaluated against the well-known gravity- and neural network (NN)-based trip distribution models. The overall results show that: traditional doubly constrained gravity models are still simple and efficient; NNs may not show expected performance when they are forced to satisfy trip constraints; simply-designed FRBSs, learning from observations and expertise, are both efficient and interpretable even if the data are large and noisy; and use of GAs in fuzzy rule-based learning considerably increases modelling performance, although it brings additional computation cost.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofTransportation Planning and Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpatial interaction modelsen_US
dc.subjectFuzzy logicen_US
dc.subjectGenetic algorithmsen_US
dc.subjectTrip distributionen_US
dc.subjectLearning algorithmsen_US
dc.subjectNeural networksen_US
dc.titleModelling trip distribution with fuzzy and genetic fuzzy systemsen_US
dc.typeArticleen_US
dc.institutionauthorKompil, Mert-
dc.institutionauthorÇelik, Hüseyin Murat-
dc.departmentİzmir Institute of Technology. City and Regional Planningen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage170en_US
dc.identifier.endpage200en_US
dc.identifier.wosWOS:000315689900002en_US
dc.identifier.scopus2-s2.0-84876292364en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/03081060.2013.770946-
dc.relation.doi10.1080/03081060.2013.770946en_US
dc.coverage.doi10.1080/03081060.2013.770946en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
Appears in Collections:City and Regional Planning / Şehir ve Bölge Planlama
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5335.pdfMakale1.26 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 23, 2024

Page view(s)

270
checked on Nov 18, 2024

Download(s)

388
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.