• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

Fully developed forced convection in a parallel plate channel with a centered porous layer

Thumbnail
View/Open
Makale (637.0Kb)
Date
2012-05
Author
Çekmer, Özgür
Mobedi, Moghtada
Özerdem, Barış
Pop, Ioan
Metadata
Show full item record
Abstract
In this study, fully developed heat and fluid flow in a parallel plate channel partially filled with porous layer is analyzed both analytically and numerically. The porous layer is located at the center of the channel and uniform heat flux is applied at the walls. The heat and fluid flow equations for clear fluid and porous regions are separately solved. Continues shear stress and heat flux conditions at the interface are used to determine the interface velocity and temperature. The velocity and temperature profiles in the channel for different values of Darcy number, thermal conductivity ratio, and porous layer thickness are plotted and discussed. The values of Nusselt number and friction factor of a fully clear fluid channel (Nu cl = 4. 12 and fRe cl = 24) are used to define heat transfer increment ratio (ε th = Nu p/Nu cl)and pressure drop increment ratio (ε p = f Re p/f Re cl) and observe the effects of an inserted porous layer on the increase of heat transfer and pressure drop. The heat transfer and pressure drop increment ratios are used to define an overall performance (ε = ε th/ε p) to evaluate overall benefits of an inserted porous layer in a parallel plate channel. The obtained results showed that for a partially porous filled channel, the value of ε is highly influenced from Darcy number, but it is not affected from thermal conductivity ratio (k r) when k r > 2. For a fully porous material filled channel, the value of ε is considerably affected from thermal conductivity ratio as the porous medium is in contact with the channel walls.
URI
http://dx.doi.org/10.1007/s11242-012-9951-x
http://hdl.handle.net/11147/5268
Collections
  • Mechanical Engineering / Makina Mühendisliği [437]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: