Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4749
Title: | Oxidation of Si surface by a pulsed Nd: YAG laser | Authors: | Özyüzer, Gülnur Aygün Atanassova, Elenada A. Alaçakır, Ali Özyüzer, Lütfi Turan, Raşit |
Keywords: | Neodymium lasers Laser assisted oxidation Laser beam energy density Spatial resolution Surface melting |
Publisher: | IOP Publishing Ltd. | Source: | Aygün, G., Atanassova, E. A., Alaçakır, A., Özyüzer, L., and Turan, R. (2004). Oxidation of Si surface by a pulsed Nd: YAG laser. Journal of Physics D: Applied Physics, 37(11), 1569-1575. doi:10.1088/0022-3727/37/11/011 | Abstract: | SiO2 thin films have been obtained by 1064 nm Nd: YAG laser oxidation of p-Si in the presence of O2. The thickness uniformity, dielectric and electrical properties of the layers have been studied. The effect of both the laser beam energy density and the substrate temperature on the oxide growth is also discussed. It was established that there exists an interval of laser beam energy density in which the oxidation occurs without surface melting. The oxidation process is controlled by the laser beam energy density rather than by the substrate temperature (673-748 K) and the higher laser power results in a thicker oxide. X-ray photoelectron spectroscopy (XPS) was used to provide information on the oxide composition. XPS results revealed that the as-grown oxide is a mixed layer of SiO2 and Si2O, which are distributed nonuniformly through the depth. MOS capacitors fabricated on the grown oxide exhibited typical capacitance-voltage, conductance-voltage characteristics. However, the density of interface states and oxide charge density were found to be higher than the typical values of thermally grown oxides. The quality of the oxide layers can be further improved by optimization of the process parameters and/or by post-processing of the grown films. It is concluded that the SiO2 films formed by the technique of Nd: YAG laser-enhanced oxidation at low temperature are potentially useful for device applications. | URI: | http://doi.org/10.1088/0022-3727/37/11/011 http://hdl.handle.net/11147/4749 |
ISSN: | 0022-3727 0022-3727 1361-6463 |
Appears in Collections: | Physics / Fizik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
22
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
22
checked on Nov 9, 2024
Page view(s)
282
checked on Nov 18, 2024
Download(s)
226
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.