Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4701
Title: Taylor series approximation for low complexity semi-blind best linear unbiased channel estimates for the general linear model with applications to DTV
Authors: Pladdy, Christopher
Nerayanuru, Sreenivasa M.
Fimoff, Mark
Özen, Serdar
Zoltowski, Michael
Keywords: Best linear unbiased estimation
Channel capacity
Gauss Markoff Theorem
Linearization
General linear model
Issue Date: 2004
Publisher: IEEE Computer Society
Source: Pladdy, C., Nerayanuru, S. M., Fimoff, M., Özen, S., and Zoltowski, M. (2004). Taylor series approximation for low complexity semi-blind best linear unbiased channel estimates for the general linear model with applications to DTV. Conference Record - Asilomar Conference on Signals, Systems and Computers, 2, 2208-2212. doi:10.1109/ACSSC.2004.1399559
Abstract: We present a low complexity approximate method for semi-blind best linear unbiased estimation (BLUE) of a channel impulse response vector (CIR) for a communication system which utilizes a periodically transmitted training sequence, within a continuous stream of information symbols. The algorithm achieves slightly degraded results at a much lower complexity than directly computing the BLUE CIR estimate. In addition, the inverse matrix required to invert the weighted normal equations to solve the general least squares problem may be precomputed and stored at the receiver. The BLUE estimate is obtained by solving the general linear model, y = Ah + w + n, for h, where w is correlated noise and the vector n is an AWGN process, which is uncorrelated with w. The solution is given by the Gauss-Markoff Theorem as h = (A TC(h) -1A) -1 A TC(h) -1y. In the present work we propose a Taylor series approximation for the function F(h) = (A TC(h) -1A) -1 A TC(h) -1y where, F: R L → R L for each fixed vector of received symbols, y, and each fixed convolution matrix of known transmitted training symbols, A. We describe the full Taylor formula for this function, F (h) = F (h id + ∑ |α|≥1(h - h id) α (∂/∂h) α F(h id) and describe algorithms using, respectively, first, second and third order approximations. The algorithms give better performance than correlation channel estimates and previous approximations used at only a slight increase in complexity. The linearization procedure used is similar to that used in the linearization to obtain the extended Kalman filter, and the higher order approximations are similar to those used in obtaining higher order Kalman filter approximations,
Description: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers; Pacific Grove, CA; United States; 7 November 2004 through 10 November 2004
URI: http://doi.org/10.1109/ACSSC.2004.1399559
http://hdl.handle.net/11147/4701
ISSN: 1058-6393
1058-6393
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
4701.pdfConference Paper638.32 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

Page view(s)

92
checked on Aug 8, 2022

Download(s)

82
checked on Aug 8, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.