Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4684
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkkurt, Sedat-
dc.contributor.authorÖzdemir, Serhan-
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorAkyol, Burak-
dc.date.accessioned2016-05-30T12:08:44Z
dc.date.available2016-05-30T12:08:44Z
dc.date.issued2003-07
dc.identifier.citationAkkurt, S., Özdemir, S., Tayfur, G., and Akyol, B. (2003). The use of GA-ANNs in the modelling of compressive strength of cement mortar. Cement and Concrete Research, 33(7), 973-979. doi:10.1016/S0008-8846(03)00006-1en_US
dc.identifier.issn0008-8846
dc.identifier.issn0008-8846-
dc.identifier.urihttp://doi.org/10.1016/S0008-8846(03)00006-1
dc.identifier.urihttp://hdl.handle.net/11147/4684
dc.description.abstractIn this paper, results of a project aimed at modelling the compressive strength of cement mortar under standard curing conditions are reported. Plant data were collected for 6 months for the chemical and physical properties of the cement that were used in model construction and testing. The training and testing data were separated from the complete original data set by the use of genetic algorithms (GAs). A GA-artificial neural network (ANN) model based on the training data of the cement strength was created. Testing of the model was also done within low average error levels (2.24%). The model was subjected to sensitivity analysis to predict the response of the system to different values of the factors affecting the strength. The plots obtained after sensitivity analysis indicated that increasing the amount of C3S, SO3 and surface area led to increased strength within the limits of the model. C2S decreased the strength whereas C3A decreased or increased the strength depending on the SO3 level. Because of the limited data range used for training, the prediction results were good only within the same range. The utility of the model is in the potential ability to control processing parameters to yield the desired strength levels and in providing information regarding the most favourable experimental conditions to obtain maximum compressive strength.en_US
dc.description.sponsorshipIzmir Institute of Technology and Çimentaş Cement Companyen_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofCement and Concrete Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectPortland cementen_US
dc.subjectData setsen_US
dc.subjectCompressive strengthen_US
dc.subjectGenetic algorithmsen_US
dc.titleThe use of GA-ANNs in the modelling of compressive strength of cement mortaren_US
dc.typeArticleen_US
dc.authoridTR3591en_US
dc.authoridTR130950en_US
dc.authoridTR2054en_US
dc.institutionauthorAkkurt, Sedat-
dc.institutionauthorÖzdemir, Serhan-
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume33en_US
dc.identifier.issue7en_US
dc.identifier.startpage973en_US
dc.identifier.endpage979en_US
dc.identifier.wosWOS:000183190600005en_US
dc.identifier.scopus2-s2.0-0037799569en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/S0008-8846(03)00006-1-
dc.relation.doi10.1016/S0008-8846(03)00006-1en_US
dc.coverage.doi10.1016/S0008-8846(03)00006-1en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityttpTop10%en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
crisitem.author.dept03.10. Department of Mechanical Engineering-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4684.pdfMakale338.41 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

148
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

126
checked on Oct 26, 2024

Page view(s)

374
checked on Nov 18, 2024

Download(s)

652
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.