Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4627
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.date.accessioned2016-05-11T08:21:01Z
dc.date.available2016-05-11T08:21:01Z
dc.date.issued2002-12
dc.identifier.citationTayfur, G. (2002). Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal, 47(6), 879-892. doi:10.1080/02626660209492997en_US
dc.identifier.issn0262-6667
dc.identifier.issn0262-6667-
dc.identifier.urihttp://doi.org/10.1080/02626660209492997
dc.identifier.urihttp://hdl.handle.net/11147/4627
dc.description.abstractSheet sediment transport was modelled by artificial neural networks (ANNs). A three-layer feed-forward artificial neural network structure was constructed and a back-propagation algorithm was used for the training of ANNs. Event-based, runoff-driven experimental sediment data were used for the training and testing of the ANNs. In training, data on slope and rainfall intensity were fed into the network as inputs and data on sediment discharge were used as target outputs. The performance of the ANNs was tested against that of the most commonly used physically-based models, whose transport capacity was based on one of the dominant variables-flow velocity (V), shear stress (SS), stream power (SP), and unit stream power (USP). The comparison results revealed that the ANNs performed as well as the physically-based models for simulating nonsteady-state sediment loads from different slopes. The performances of the ANNs and the physically-based models were also quantitatively investigated to estimate mean sediment discharges from experimental runs. The investigation results indicated that better estimations were obtained for V over mild and steep slopes, under low rainfall intensity; for USP over mild and steep slopes, under high rainfall intensity; for SP and SS over very steep slopes, under high rainfall intensity; and for ANNs over steep and very steep slopes, under very high rainfall intensities.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofHydrological Sciences Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectSediment transporten_US
dc.subjectTransport capacityen_US
dc.subjectSheet sedimentsen_US
dc.titleArtificial neural networks for sheet sediment transporten_US
dc.title.alternativeApplication des réseaux de neurones artificiels pour le transport sédimentaire en nappeen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume47en_US
dc.identifier.issue6en_US
dc.identifier.startpage879en_US
dc.identifier.endpage892en_US
dc.identifier.wosWOS:000179560400002en_US
dc.identifier.scopus2-s2.0-0036898378en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/02626660209492997-
dc.relation.doi10.1080/02626660209492997en_US
dc.coverage.doi10.1080/02626660209492997en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityttpTop10%en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4627.pdfMakale937.73 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

167
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

146
checked on Nov 16, 2024

Page view(s)

9,374
checked on Nov 18, 2024

Download(s)

192
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.