Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorKavvas, M. Levent-
dc.date.accessioned2016-04-15T08:50:33Z
dc.date.available2016-04-15T08:50:33Z
dc.date.issued1998-06
dc.identifier.citationGökmen, T., and Kavvas, M. L. (1998). Areally-averaged overland flow equations at hillslope scale. Hydrological Sciences Journal, 43(3), 361-378. doi:10.1080/02626669809492132en_US
dc.identifier.urihttp://dx.doi.org/10.1080/02626669809492132
dc.identifier.urihttp://hdl.handle.net/11147/4509
dc.description.abstractMicroscale-averaged inter-rill area sheet flow and rill flow equations (Tayfur and Kavvas, 1994) are averaged along the inter-rill area length and rill length to obtain local areally-averaged inter-rill area sheet flow and rill flow equations (local-scale areal averaging). In this averaging, the local areally-averaged flow depths are related to the microscale-averaged flow depths at the outlet sections (downstream ends) of a rill and an inter-rill area by the assumption that the flow in these sections has the profile of a sine function. The resulting local areally-averaged flow equations become time dependent only. To minimize computational efforts and economize on the number of model parameters, local areally-averaged flow equations are then averaged over a whole hillslope section (hillslope-scale areal averaging). The expectations of the terms containing more than one variable are obtained by the method of regular perturbation. Comparison of model results with observed data is satisfactory. The comparison of the model results with those of previously developed models which use point-scale and large-scale (transectionally) averaged technology indicates the superiority of this model over them. Microscale-averaged inter-rill area sheet flow and rill flow equations (Tayfur & Kavvas, 1994) are averaged along the inter-rill area length and rill length to obtain local areally-averaged inter-rill area sheet flow and rill flow equations (local-scale areal averaging). In this averaging, the local areally-averaged flow depths are related to the microscale-averaged flow depths at the outlet sections (downstream ends) of a rill and an inter-rill area by the assumption that the flow in these sections has the profile of a sine function. The resulting local areally-averaged flow equations become time dependent only. To minimize computational efforts and economize on the number of model parameters, local areally-averaged flow equations are then averaged over a whole hillslope section (hillslope-scale areal averaging). The expectations of the terms containing more than one variable are obtained by the method of regular perturbation. Comparison of model results with observed data is satisfactory. The comparison of the model results with those of previously developed models which use point-scale and large-scale (transectionally) averaged technology indicates the superiority of this model over themen_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofHydrological Sciences Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFlow of wateren_US
dc.subjectPerturbation techniquesen_US
dc.subjectInter rill area sheet flowen_US
dc.subjectOverland flowen_US
dc.subjectRill flow equationsen_US
dc.titleAreally-averaged overland flow equations at hillslope scaleen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume43en_US
dc.identifier.issue3en_US
dc.identifier.startpage361en_US
dc.identifier.endpage378en_US
dc.identifier.wosWOS:000074047700003en_US
dc.identifier.scopus2-s2.0-0032098344en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/02626669809492132-
dc.relation.doi10.1080/02626669809492132en_US
dc.coverage.doi10.1080/02626669809492132en_US
dc.identifier.wosqualityQ3-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4509.pdfMakale1.79 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

33
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

29
checked on Mar 27, 2024

Page view(s)

8,760
checked on Apr 22, 2024

Download(s)

220
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.