Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4182
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBüyükaşık, Engin-
dc.contributor.authorDurğun, Yılmaz-
dc.date.accessioned2014-11-18T12:00:03Z-
dc.date.available2014-11-18T12:00:03Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/11147/4182-
dc.descriptionThesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014en_US
dc.descriptionIncludes bibliographical references (leaves: 67-72)en_US
dc.descriptionText in English; Abstract: Turkish an Englishen_US
dc.descriptionix, 72 leavesen_US
dc.description.abstractThe main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0.en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneral module theoryen_US
dc.subjectAssociative ringsen_US
dc.subjectHomological algebraen_US
dc.subjectProper classesen_US
dc.subjectInjective modulesen_US
dc.titleHomological Objects of Proper Classes Generated by Simple Modulesen_US
dc.title.alternativeBasit Modüller ile Üretilen Öz Sınıfların Homolojik Nesnelerien_US
dc.typeDoctoral Thesisen_US
dc.departmentThesis (Doctoral)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeDoctoral Thesis-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:Phd Degree / Doktora
Files in This Item:
File Description SizeFormat 
10018485.pdfDoctoralThesis266.87 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.