Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4182
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBüyükaşık, Engin-
dc.contributor.authorDurğun, Yılmaz-
dc.date.accessioned2014-11-18T12:00:03Z-
dc.date.available2014-11-18T12:00:03Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/11147/4182-
dc.descriptionThesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014en_US
dc.descriptionIncludes bibliographical references (leaves: 67-72)en_US
dc.descriptionText in English; Abstract: Turkish an Englishen_US
dc.descriptionix, 72 leavesen_US
dc.description.abstractThe main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0.en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneral module theoryen_US
dc.subjectAssociative ringsen_US
dc.subjectHomological algebraen_US
dc.subjectProper classesen_US
dc.subjectInjective modulesen_US
dc.titleHomological objects of proper classes generated by simple modulesen_US
dc.title.alternativeBasit modüller ile üretilen öz sınıfların homolojik nesnelerien_US
dc.typeDoctoral Thesisen_US
dc.departmentThesis (Doctoral)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeDoctoral Thesis-
Appears in Collections:Phd Degree / Doktora
Files in This Item:
File Description SizeFormat 
10018485.pdfDoctoralThesis266.87 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

146
checked on Jun 10, 2024

Download(s)

90
checked on Jun 10, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.