Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4062
Title: Comparison of geometric integrator methods for Hamilton systems
Authors: İneci, Pınar
Advisors: Tanoğlu, Gamze
Publisher: Izmir Institute of Technology
Abstract: Geometric numerical integration is relatively new area of numerical analysis The aim of a series numerical methods is to preserve some geometric properties of the flow of a differential equation such as symplecticity or reversibility In this thesis, we illustrate the effectiveness of geometric integration methods. For this purpose symplectic Euler method, adjoint of symplectic Euler method, midpoint rule, Störmer-Verlet method and higher order methods obtained by composition of midpoint or Störmer-Verlet method are considered as geometric integration methods. Whereas explicit Euler, implicit Euler, trapezoidal rule, classic Runge-Kutta methods are chosen as non-geometric integration methods. Both geometric and non-geometric integration methods are applied to the Kepler problem which has three conserved quantities: energy, angular momentum and the Runge-Lenz vector, in order to determine which those quantities are preserved better by these methods.
Description: Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2009
Includes bibliographical references (leaves: 79)
Text in English; Abstract: Turkish and English
xii, 115leaves
URI: http://hdl.handle.net/11147/4062
Appears in Collections:Master Degree / Yüksek Lisans Tezleri

Files in This Item:
File Description SizeFormat 
T000184.pdfMasterThesis1.04 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

240
checked on Nov 18, 2024

Download(s)

152
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.