Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4035
Title: | Inflatable pillow system as a glass substitute in terms of building envelope | Authors: | Candemir, Kadri Uygar | Advisors: | Çıkış, Şeniz | Publisher: | Izmir Institute of Technology | Abstract: | In the line with the increasing energy demand, there have been many investigations related with the conservation of energy used in buildings. The systems and materials used in buildings have an important role in consumption of energy. Transparent materials and the systems occupies transparent materials contributes this consumption in positive and negative way due to their design and properties. Nevertheless, the transparent materials used in buildings as glazing have importance in order to increase comfort, decrease cost and environmental harm.This study aims to investigate a contemporary construction system; ETFE foil pillow system, which is also known as, Inflatable Pillow System made of ETFE Foil. In the scope of the study, pneumatic pillow system investigated in detail and its performance evaluated due to environmental control criteria, which can be compared with other conventional glass glazing products. The study also involves cost analysis and brief knowledge about contemporary cases that have been completely or partially constructed with this system. The increase in the amount of transparent surfaces in contemporary buildings, pointed out that the conventional glazing system are no more appropriate. Therefore, in specific cases, usage of conventional glass glazing systems results as a cost increase and loss of comfort. The alternatives of the conventional glazing systems don.t have appropriate performance or don.t meet the need of the consumer. Inflatable ETFE foil pillows have better optical properties than glass glazing systems. Generally, thermal properties of this system equal to the advanced double-glazing. Light and heat transmission values vary by changing the foil type and number of layer. Low sound reduction index can be an obstacle or a chance for designers that should be given attention in design phase. The pillow system that relatively provides fire and earthquake protection is also lightweight and flexible. Thus, includes many criteria that are expected in contemporary constructions. The inflatable pillow system made of ETFE foil can be considered as a safe construction method due to mechanical properties of the system and the membrane material that is used as pillows. System reduces operational and maintenance cost for the building. Considerable amount of expenses for lighting and heating can also be reduced by the usage of the pillow system. The lightweight nature of the pillow system affects the construction of the whole building, which also results as a cost reduction.Pillow system is commonly used for greenhouses and botanical gardens and also used for sports and leisure halls as well as institutions ands museums. Addition to its usage as a skylight or façade cover, pillow system can be used as a total envelope that covers the whole construction underneath.As a result, this study investigates ETFE foil pillows and their environmental control properties against conventional glass glazing systems. The results are evaluated in the line with the information gained. The advantages and disadvantages of the system as a glazing are given in detail. Although it.s not expected that ETFE pillow system totally be replaced with the conventional glass glazing system, it constitutes an alternative glazing system in specific cases.Keywords: pillow system, pneumatic membrane, glazing, ETFE foil, glass, fluoropolymer, environmental control criteria. | Description: | Thesis (Master)--İzmir Institute of Technology, Architecture, İzmir, 2003 Includes bibliographical references (leaves: 169-171) Text in English; Abstract: Turkish and English xiii, 174 leaves |
URI: | http://hdl.handle.net/11147/4035 |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T000290.pdf | MasterThesis | 6.71 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
1,570
checked on Nov 25, 2024
Download(s)
298
checked on Nov 25, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.