Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3956
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlizade, Rafailen
dc.contributor.authorDemirci, Yılmaz Mehmet-
dc.date.accessioned2014-07-22T13:52:49Z-
dc.date.available2014-07-22T13:52:49Z-
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/11147/3956-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2008en
dc.descriptionIncludes bibliographical references (leaves: 37-38)en
dc.descriptionText in English: Abstract: Turkish and Englishen
dc.descriptionix, 40 leavesen
dc.description.abstractIn this thesis, we study the class S of all short exact sequences 0 A B C 0 where Im& has a supplement in B, i.e. a minimal elemenr in the set {V B V + Im& . B}.The corresponding elements of ExtR(C;A) are called k-elements. In general k-elements need not form a subgroup in ExtR(C;A), but in the category TR of torsion R-modules over a Dedekind domain R, S is a proper class; there are no nonzero S-projective modules and the only S-injective modules are injective R-modules in TR. In this thesis we also give the structure of S-coinjective R-modules in TR. Moreover, we define the class SB of all short exact sequences 0 A B C 0 where Im & has a supplement V in B and V in B and In & is bounded. The corresponding elements of ExtR(C;A) are called B-elements. Over a noetherian integral domain of Krull dimension 1, B-elements form a proper class. In the category TR over a Dedekind domain R, SB is a proper class; there are no nonzero SB-projective R-modules and SB-injective R-modules are only the injective R-modules. In the category TR, reduced SB-coinjective R-modules are bounded R-modules.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA247. D378 2008en
dc.subject.lcshModules (Algebra)en
dc.titleProper class generated by submodules that have supplementsen_US
dc.typeMaster Thesisen_US
dc.institutionauthorDemirci, Yılmaz Mehmet-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000747.pdfMasterThesis283.27 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

162
checked on Nov 18, 2024

Download(s)

48
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.