Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3691
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPüskülcü, Halisen
dc.contributor.authorGürel, Görkem-
dc.date.accessioned2014-07-22T13:52:10Z-
dc.date.available2014-07-22T13:52:10Z-
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/11147/3691-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008en
dc.descriptionIncludes bibliographical references (leaves: 59-63)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionx, 63 leavesen
dc.description.abstractFollowing the increasing use of XML technology for data storage and data exchange between applications, the subject of mining XML documents has become more researchable and important topic. In this study, we considered the problem of Mining Association Rules between items in XML document. The principal purpose of this study is applying association rule algorithms directly to the XML documents with using XQuery which is a functional expression language that can be used to query or process XML data. We used three different algorithms; Apriori, AprioriTid and High Efficient AprioriTid. We give comparisons of mining times of these three apriori-like algorithms on XML documents using different support levels, different datasets and different dataset sizes.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA76.9.D343 G786 2008en
dc.subject.lcshData minningen
dc.subject.lcshXML (Document marcup language)en
dc.subject.lcshComputer algorithmsen
dc.titleMining XML documents with association rule algorithmsen_US
dc.typeMaster Thesisen_US
dc.institutionauthorGürel, Görkem-
dc.departmentThesis (Master)--İzmir Institute of Technology, Computer Engineeringen_US
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000708.pdfMasterThesis564.24 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

96
checked on Nov 18, 2024

Download(s)

72
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.