Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3293
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGüden, Mustafaen
dc.contributor.authorİnce, Umut-
dc.date.accessioned2014-07-22T13:51:15Z-
dc.date.available2014-07-22T13:51:15Z-
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/11147/3293-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2005en
dc.descriptionIncludes bibliographical references (leaves: 103-108)en
dc.descriptionText in English: Abstract: Turkish and Englishen
dc.descriptionxiv, 120 leavesen
dc.description.abstractThe main goal of this study is to determine the corrosion rate and mechanisms of an St-37 steel material currently used as a pipeline material in Izmir.Balçova Geothermal District Heating System. Alternative steel piping materials, AISI 304, AISI 316, AISI 316L austenitic stainless steels, were also investigated for their corrosion behaviour in the same geothermal system. Two fluid velocities, 0.02 and 9.6 m/s, showing the low or stagnant and high velocity fluid flow respectively were selected for the corrosion experiments at the site. Intentionally prepared tensile St-37 test specimens were used to investigate the effect of corrosion (particularly pitting type of corrosion) on the ultimate tensile strength of the steel, while conventional test coupons were usedin the testing of stainless steels. These tests were further accompanied by the qualitative laboratory tests involving Ryznar stability index and electropotential measurements. It was found that laboratory measurements, Ryznar stability index, pitting resistance equivalent and electropotential measurements showed good agreement with the result of corrosion experiments conducted at the site. Although the uniform corrosion rates were relatively low in the tested steels, the pitting corrosion rate was greatly promoted in St-37 samples at the low fluid velocity, mainly driven by the SRB activity and tubercle formation. The tensile tests on the St-37 corroded samples have further shown that the UTS decreased as the exposure time increased. The decrease in the UTS of St-37 was more pronounced in the samples tested at the lower fluid velocity, which showed a good agreement with the measured maximum pitting depths found in these samples. The service life time of the St-37 was further predicted for two selected fluid velocities using the equations developed for the effect of defects on the bursting pressure of the pipelines. The predicted service life of St-37 was 57 and 95 months for low and high velocity fluid flow respectively. These service lives were also comparable with the reported service life of the pipelines used in the studied geothermal system. Finally, a solution were proposed to increase the service lifetime of St-37 pipes: addition of SRB activity reducing reagents to the fluid.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccTA473 .I36 2005en
dc.subject.lcshSteel--Corrosionen
dc.subject.lcshGeothermal resources--İzmir (Turkey)en
dc.titleA case study of material testing for corrosion in low temperature geothermal systemsen_US
dc.typeMaster Thesisen_US
dc.institutionauthorİnce, Umut-
dc.departmentThesis (Master)--İzmir Institute of Technology, Materials Science and Engineeringen_US
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000387.pdfMasterThesis17.25 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

318
checked on Nov 18, 2024

Download(s)

440
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.