Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3211
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlizade, Refailen
dc.contributor.authorErdoğan, Sultan Eylem-
dc.date.accessioned2014-07-22T13:51:05Z-
dc.date.available2014-07-22T13:51:05Z-
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/11147/3211-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2004en
dc.descriptionIncludes bibliographical references (leaves: 50-51)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionvi, 49 leavesen
dc.description.abstractWe introduce and study absolutely supplement (respectively complement) modules. We call a module an absolutely supplement (respectively complement) if it is a supplement (respectively complement) in every module containing it. We show that a module is absolutely supplement (respectively complement) if and only if it is a supplement (respectively complement) in its injective envelope. The class of all absolutely supplement (respectively complement) modules is closed under extensions and under supplement submodules (respectively under factor modules by complement submodules). We also consider the dual notions of absolutely co-supplements (respectively co-complements).en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA169 .E66 2004en
dc.subject.lcshAlgebra, Homologicalen
dc.titleAbsolutely supplement and absolutely complement modulesen_US
dc.typeMaster Thesisen_US
dc.institutionauthorErdoğan, Sultan Eylem-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000339.pdfMasterThesis329.21 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

788
checked on Dec 2, 2024

Download(s)

612
checked on Dec 2, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.