Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3018
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlizade, Rafailen
dc.contributor.authorDurğun, Yılmaz-
dc.date.accessioned2014-07-22T13:50:43Z-
dc.date.available2014-07-22T13:50:43Z-
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/11147/3018-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2009en
dc.descriptionIncludes bibliographical references (leaves: 61-62)en
dc.descriptionText in English: Abstract: Turkish and Englishen
dc.descriptionx, 63 leavesen
dc.description.abstractThe main purpose of this thesis is to investigate the least proper class containing the classWS of R-modules determined by weak supplement submodules over a ring R, in particular, over hereditary rings. A submodule A of a module B has(is) weak supplement if and only if there exist a submodule V in B such that A + V . B and the intersection of submodules of A and V is small in B. The classWS does not form a proper class, in general. By extending the class WS, we obtained the least proper class containing the class WS of R-modules over hereditary rings. We investigate the homological objects of the least proper class. We determine the structure of elements of the proper class by submodules.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA247 .D59 2009en
dc.subject.lcshModules (Algebra)en
dc.titleThe least proper class containing weak supplementen_US
dc.typeMaster Thesisen_US
dc.institutionauthorDurğun, Yılmaz-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000234.pdfMasterThesis416.32 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

130
checked on Nov 18, 2024

Download(s)

64
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.