• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 7. İYTE Tezler / IZTECH Theses & Dissertations
  • Master Degree / Yüksek Lisans Tezleri
  • View Item
  •   DSpace Home
  • 7. İYTE Tezler / IZTECH Theses & Dissertations
  • Master Degree / Yüksek Lisans Tezleri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

Determination of material constitutive equation of a biomedical grade Ti6AI4V alloy for cross-wedge rolling

Thumbnail
View/Open
MasterThesis (5.708Mb)
Date
2009
Author
Kıranlı, Engin
Metadata
Show full item record
Abstract
In the present work, the JC flow stress and damage parameters of a biomedical grade Ti6Al4V alloy that contained very low levels of interstitial elements were determined for the modeling its deformation in the CWR process. The JC models were determined through quasi-static (10-3-0.1 s-1) and high strain rates (300-1000 s-1) within the temperature range of 25-1150 oC. High strain rate tests were performed using both compression and tension SHPB testing devices. The damage model was determined using notched specimens of different stress triaxiality. The tested alloy flow stresses were found to increase with increasing strain rate for both compression and tension tests. This was proved that the alloy has a strain rate sensitive flow stress behavior. At increasing strain rates the failure strains in tension decreased. The reduced fracture strain was also confirmed by the microscopic observations. In statically tested samples the ductile fracture mode was composed of smaller but deeper dimples, while the dimples were observed to be shallow and larger in dynamically tested samples. The tensile fracture presumably started in a region and the b phase microscopically shown to deform plastically through the tensile axis. The compression failure mode of the alloy was found to be resulting from the shear band formation followed by the fracture of the shear band. High temperature test conducted at quasi-static strain rate showed that the stress values decreased greatly after about 800 oC due to a ->b transformation. Due to this two different JC material models valid between 25-600 oC and 800-1150 oC were developed. The determined JC parameters were found to be well agreed with the literature except the model obtained from the compression tests.
URI
http://hdl.handle.net/11147/3017
Collections
  • Master Degree / Yüksek Lisans Tezleri [1695]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: