Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPashaev, Oktay-
dc.contributor.authorYılmaz, Oğuz-
dc.date.accessioned2017-01-25T11:42:34Z
dc.date.available2017-01-25T11:42:34Z
dc.date.issued2009
dc.identifier.citationPashaev, K. and Yılmaz, O. (2009). Power-series solution for the two-dimensional inviscid flow with a vortex and multiple cylinders. Journal of Engineering Mathematics, 65(2), 157-169. doi:10.1007/s10665-009-9271-5en_US
dc.identifier.issn0022-0833
dc.identifier.issn0022-0833-
dc.identifier.urihttp://dx.doi.org/10.1007/s10665-009-9271-5
dc.identifier.urihttp://hdl.handle.net/11147/2855
dc.description.abstractThe problem of a point vortex and N fixed cylinders in a two-dimensional inviscid fluid is studied and an analytical-numerical solution in the form of an infinite power series for the velocity field is obtained using complex analysis. The velocity distribution for the case of two cylinders is compared with the existing results of the problem of a vortex in an annular region which is conformally mapped onto the exterior of two cylinders. Limiting cases of N cylinders and the vortex, being far away from each other are studied. In these cases, "the dipole approximation" or "the point-island approximation" is derived, and its region of validity is established by numerical tests. The velocity distribution for a geometry of four cylinders placed at the vertices of a square and a vortex is presented. The problem of vortex motion with N cylinders addressed in the paper attracted attention recently owing to its importance in many applications. However, existing solutions using Abelian function theory are sophisticated and the theory is not one of the standard techniques used by applied mathematicians and engineers. Moreover, in the N ≥ 3 cylinder problem, the infinite product involved in the presentation of the Schottky-Klein prime function must also be truncated. So, the approach used in the paper is simple and an alternative to existing methods. This is the main motivation for this study.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofJournal of Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCircle theoremen_US
dc.subjectHydrodynamic interactionen_US
dc.subjectPoint vortexen_US
dc.subjectPower-series solutionen_US
dc.subjectVortex dynamicsen_US
dc.titlePower-series solution for the two-dimensional inviscid flow with a vortex and multiple cylindersen_US
dc.typeArticleen_US
dc.authoridTR57865en_US
dc.authoridTR1568en_US
dc.institutionauthorPashaev, Oktay-
dc.institutionauthorYılmaz, Oğuz-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume65en_US
dc.identifier.issue2en_US
dc.identifier.startpage157en_US
dc.identifier.endpage169en_US
dc.identifier.wosWOS:000269860400005en_US
dc.identifier.scopus2-s2.0-70349085799en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s10665-009-9271-5-
dc.relation.doi10.1007/s10665-009-9271-5en_US
dc.coverage.doi10.1007/s10665-009-9271-5en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2855.pdfMakale401.33 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 16, 2024

Page view(s)

4,628
checked on Nov 18, 2024

Download(s)

1,280
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.