Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2803
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydın, Selçuk Han-
dc.contributor.authorNeslitürk, Ali İhsan-
dc.contributor.authorTezer Sezgin, Münevver-
dc.date.accessioned2017-01-17T08:34:22Z
dc.date.available2017-01-17T08:34:22Z
dc.date.issued2010-01
dc.identifier.citationAydın, S. H., Neslitürk, A. İ., and Tezer Sezgin, M. (2010). Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. International Journal for Numerical Methods in Fluids, 62(2), 188-210. doi:10.1002/fld.2019en_US
dc.identifier.issn0271-2091
dc.identifier.issn0271-2091-
dc.identifier.urihttp://doi.org/10.1002/fld.2019
dc.identifier.urihttp://hdl.handle.net/11147/2803
dc.description.abstractWe consider the Galerkin finite element method (FEM) for the incompressible magnetohydrodynamic (MHD) equations in two dimension. The domain is discretized into a set of regular triangular elements and the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described and its application to the MHD equations is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems including the MHD cavity flow and the MHD flow over a step. The results show that the proper choice of the subgrid node is crucial to get stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Furthermore, the approximate solutions obtained show the well-known characteristics of the MHD flow. Copyright © 2009 John Wiley & Sons, Ltd.en_US
dc.description.sponsorshipThe Scientific and Technical Research Council of Turkey (Contract 105T091)en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Inc.en_US
dc.relation.ispartofInternational Journal for Numerical Methods in Fluidsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFinite element methoden_US
dc.subjectMHD equationsen_US
dc.subjectStabilizing subgriden_US
dc.subjectTwo-level finite element methoden_US
dc.subjectTriangular elementsen_US
dc.titleTwo-level finite element method with a stabilizing subgrid for the incompressible MHD equationsen_US
dc.typeArticleen_US
dc.institutionauthorNeslitürk, Ali İhsan-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume62en_US
dc.identifier.issue2en_US
dc.identifier.startpage188en_US
dc.identifier.endpage210en_US
dc.identifier.wosWOS:000273169500004en_US
dc.identifier.scopus2-s2.0-77950191694en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/TBAG/105T091en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/fld.2019-
dc.relation.doi10.1002/fld.2019en_US
dc.coverage.doi10.1002/fld.2019en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2803.pdfMakale3.31 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

52
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

51
checked on Nov 9, 2024

Page view(s)

222
checked on Nov 18, 2024

Download(s)

324
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.