Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMobedi, Moghtada-
dc.contributor.authorÖzkol, Ünver-
dc.contributor.authorSunden, Bengt-
dc.date.accessioned2017-01-16T13:47:36Z
dc.date.available2017-01-16T13:47:36Z
dc.date.issued2010-01
dc.identifier.citationMobedi, M., Özkol, Ü., and Sunden, B. (2010). Visualization of diffusion and convection heat transport in a square cavity with natural convection. International Journal of Heat and Mass Transfer, 53(1-3), 99-109. doi:10.1016/j.ijheatmasstransfer.2009.09.048en_US
dc.identifier.issn0017-9310
dc.identifier.issn0017-9310-
dc.identifier.issn1879-2189-
dc.identifier.urihttp://doi.org/10.1016/j.ijheatmasstransfer.2009.09.048
dc.identifier.urihttp://hdl.handle.net/11147/2798
dc.description.abstractIn this study, the total heatfunction equation which includes diffusion and convection transport is divided into the corresponding heatfunction equations. The superposition rule is used to obtain the mathematical definitions of diffusion and convection heatfunctions and corresponding boundary conditions. It is observed that the separate visualization of diffusion and convection heatlines provides significant information on understanding of the mechanism of heat transfer in a convective flow. The direction of the diffusion and convection heat transport as well as the strength of convection compared to the conduction in entire or in a portion of a domain can be visualized. The diffusion heatlines demonstrate a potential flow like behavior while convective heat flow rotates due to the source term of the convection heatfunction equation, similar to the rotation of fluid flow generated by fluid flow vorticity. The similarity between the streamfunction and the total heatfunction yields a concept of heat flow vorticity, Ωt. The obtained results show that the maximum absolute value of the convection heatfunction may be an appropriate parameter for determination of the convection strength. The diffusion and convection heatfunction equations for natural convection in a differentially heated square cavity for four different length of the heated surface on the right vertical wall as sp = L/4, L/2, 3L/4 and L and a fixed length of the cooled surface on the right vertical wall as L/4 are obtained and corresponding heatlines are drawn. The values of the conduction heatfunction are positive while the sign of convection heatfunction values is negative for the studied cases. Based on the distribution of total heatlines, two regions are detected in the cavity, an active region with the positive values of heatlines signifying dominant conduction heat transfer and a passive region with the negative heatfunction values in where convection heat flow is dominant and heat only rotates in a closed contour pattern. The variations of average Nusselt number, average of heat flow vorticity, maximum absolute values of convection heatfunction and streamfunction at different Rayleigh numbers and lengths of the heated surface are presented.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofInternational Journal of Heat and Mass Transferen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFlow of fluidsen_US
dc.subjectConvectionen_US
dc.subjectConvective flowen_US
dc.subjectDiffusionen_US
dc.subjectHeatlinesen_US
dc.subjectVorticityen_US
dc.titleVisualization of diffusion and convection heat transport in a square cavity with natural convectionen_US
dc.typeArticleen_US
dc.authoridTR116577en_US
dc.institutionauthorMobedi, Moghtada-
dc.institutionauthorÖzkol, Ünver-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume53en_US
dc.identifier.issue1-3en_US
dc.identifier.startpage99en_US
dc.identifier.endpage109en_US
dc.identifier.wosWOS:000272877900012en_US
dc.identifier.scopus2-s2.0-71749100423en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2009.09.048-
dc.relation.doi10.1016/j.ijheatmasstransfer.2009.09.048en_US
dc.coverage.doi10.1016/j.ijheatmasstransfer.2009.09.048en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.10. Department of Mechanical Engineering-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2798.pdfMakale1.19 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 29, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 23, 2024

Page view(s)

318
checked on Dec 2, 2024

Download(s)

820
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.