Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaptanoğlu, Hakkı Turgay-
dc.contributor.authorTülü, Serdar-
dc.date.accessioned2017-01-12T13:26:35Z
dc.date.available2017-01-12T13:26:35Z
dc.date.issued2011-02
dc.identifier.citationKaptanoğlu, H. T., and Tülü, S. (2011). Weighted bloch, lipschitz, zygmund, bers, and growth spaces of the ball: Bergman projections and characterizations. Taiwanese Journal of Mathematics, 15(1), 101-127.en_US
dc.identifier.issn1027-5487
dc.identifier.issn1027-5487-
dc.identifier.urihttp://hdl.handle.net/11147/2771
dc.description.abstractWe determine precise conditions for the boundedness of Bergman projections from Lebesgue classes onto the spaces in the title, which are members of the same one-parameter family of spaces. The projections provide integral representations for the functions in the spaces. We obtain many properties of the spaces as straightforward corollaries of the projections, integral representations, and isometries among the spaces. We solve the Gleason problem and an extremal problem for pointevaluations in each space. We establish maximality of these spaces among those that exhibit Mobius-type invariances and possess decent functionals. We find new Hermitiannon-Kahlerian metrics that characterize half of these spaces by Lipschitz-type inequalities.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofTaiwanese Journal of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBergman projectionen_US
dc.subjectBlochen_US
dc.subjectLipschitzen_US
dc.subjectZygmunden_US
dc.subjectGrowthen_US
dc.subjectBersen_US
dc.subjectBesov spaceen_US
dc.subjectIsometryen_US
dc.subjectGleason problemen_US
dc.subjectSlice functionen_US
dc.subjectBoundary growthen_US
dc.subjectTaylor coefficienten_US
dc.subjectExtremal point evaluationen_US
dc.subjectDualityen_US
dc.subjectInterpolationen_US
dc.subjectMaximal spaceen_US
dc.subjectHermitian metricen_US
dc.subjectLaplace-Beltrami operatoren_US
dc.subjectHolomorphic sectional curvatureen_US
dc.titleWeighted bloch, lipschitz, zygmund, bers, and growth spaces of the ball: Bergman projections and characterizationsen_US
dc.typeArticleen_US
dc.institutionauthorTülü, Serdar-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.startpage101en_US
dc.identifier.endpage127en_US
dc.identifier.wosWOS:000287339300008en_US
dc.identifier.scopus2-s2.0-79251603384en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2771.pdfMakale183.81 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 9, 2024

Page view(s)

206
checked on Nov 18, 2024

Download(s)

218
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.