Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2695
Title: | Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel | Authors: | Öztürk, Orhan | Keywords: | Mössbauer spectroscopy Nanohardness Nitrogen implantation XRD Stainless steel |
Publisher: | Elsevier Ltd. | Source: | Öztürk, O. (2009). Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 267(8-9), 1526-1530. doi:10.1016/j.nimb.2009.01.072 | Abstract: | Nitrogen ion implantation can be used to improve surface mechanical properties (hardness, wear, friction) of stainless steels by modifying the near-surface layers of these materials. In this study, a medical grade FeCrNi alloy (316L stainless steel plate) was implanted with 85 keV nitrogen ions to a high fluence of 1 × 1018N2+ / cm2 at a substrate temperature <200 °C in an industrial implantation facility. The N implanted layer microstructures, thicknesses and strengths were studied by a combination of X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS), atomic force microscopy (AFM) and nanohardness measurements. AFM was also used for the surface roughness analysis of the implanted as well as polished materials. The CEMS analysis indicate that the N implanted layer is ∼200 nm thick and is composed of ε-(Fe,Cr,Ni)2+xN-like nitride phase with mainly paramagnetic characteristics. The nanohardness measurements clearly indicate an enhanced hardness behaviour for the N implanted layer. It is found that the implanted layer hardness is increased by a factor of 1.5 in comparison to that of the substrate material. The increased hardness resulting from nitrogen implantation is attributed to the formation of ε nitride phase. | URI: | http://dx.doi.org/10.1016/j.nimb.2009.01.072 http://hdl.handle.net/11147/2695 |
ISSN: | 0168-583X 0168-583X |
Appears in Collections: | Physics / Fizik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
21
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
17
checked on Nov 9, 2024
Page view(s)
246
checked on Nov 18, 2024
Download(s)
280
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.