Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2016-12-22T12:04:15Z-
dc.date.available2016-12-22T12:04:15Z-
dc.date.issued2010-10-
dc.identifier.citationKaraçalı, B. (2010). Quasi-supervised learning for biomedical data analysis. Pattern Recognition, 43(10), 3674-3682. doi:10.1016/j.patcog.2010.04.024en_US
dc.identifier.issn0031-3203-
dc.identifier.urihttp://doi.org/10.1016/j.patcog.2010.04.024-
dc.identifier.urihttp://hdl.handle.net/11147/2653-
dc.description.abstractWe present a novel formulation for pattern recognition in biomedical data. We adopt a binary recognition scenario where a control dataset contains samples of one class only, while a mixed dataset contains an unlabeled collection of samples from both classes. The mixed dataset samples that belong to the second class are identified by estimating posterior probabilities of samples for being in the control or the mixed datasets. Experiments on synthetic data established a better detection performance against possible alternatives. The fitness of the method in biomedical data analysis was further demonstrated on real multi-color flow cytometry and multi-channel electroencephalography data. © 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofPattern Recognitionen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData flow analysisen_US
dc.subjectAbnormality detectionen_US
dc.subjectBiomedical data analysisen_US
dc.subjectElectroencephalographyen_US
dc.subjectSupport vector machinesen_US
dc.titleQuasi-supervised learning for biomedical data analysisen_US
dc.typeArticleen_US
dc.authoridTR11527en_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume43en_US
dc.identifier.issue10en_US
dc.identifier.startpage3674en_US
dc.identifier.endpage3682en_US
dc.identifier.wosWOS:000280006700041en_US
dc.identifier.scopus2-s2.0-77953613179en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.patcog.2010.04.024-
dc.relation.doi10.1016/j.patcog.2010.04.024en_US
dc.coverage.doi10.1016/j.patcog.2010.04.024en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2653.pdfMakale569.09 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

13
checked on Oct 26, 2024

Page view(s)

418
checked on Nov 25, 2024

Download(s)

388
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.