Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2653
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karaçalı, Bilge | - |
dc.date.accessioned | 2016-12-22T12:04:15Z | - |
dc.date.available | 2016-12-22T12:04:15Z | - |
dc.date.issued | 2010-10 | - |
dc.identifier.citation | Karaçalı, B. (2010). Quasi-supervised learning for biomedical data analysis. Pattern Recognition, 43(10), 3674-3682. doi:10.1016/j.patcog.2010.04.024 | en_US |
dc.identifier.issn | 0031-3203 | - |
dc.identifier.uri | http://doi.org/10.1016/j.patcog.2010.04.024 | - |
dc.identifier.uri | http://hdl.handle.net/11147/2653 | - |
dc.description.abstract | We present a novel formulation for pattern recognition in biomedical data. We adopt a binary recognition scenario where a control dataset contains samples of one class only, while a mixed dataset contains an unlabeled collection of samples from both classes. The mixed dataset samples that belong to the second class are identified by estimating posterior probabilities of samples for being in the control or the mixed datasets. Experiments on synthetic data established a better detection performance against possible alternatives. The fitness of the method in biomedical data analysis was further demonstrated on real multi-color flow cytometry and multi-channel electroencephalography data. © 2010 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Pattern Recognition | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Data flow analysis | en_US |
dc.subject | Abnormality detection | en_US |
dc.subject | Biomedical data analysis | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Support vector machines | en_US |
dc.title | Quasi-supervised learning for biomedical data analysis | en_US |
dc.type | Article | en_US |
dc.authorid | TR11527 | en_US |
dc.institutionauthor | Karaçalı, Bilge | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 3674 | en_US |
dc.identifier.endpage | 3682 | en_US |
dc.identifier.wos | WOS:000280006700041 | en_US |
dc.identifier.scopus | 2-s2.0-77953613179 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.patcog.2010.04.024 | - |
dc.relation.doi | 10.1016/j.patcog.2010.04.024 | en_US |
dc.coverage.doi | 10.1016/j.patcog.2010.04.024 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
16
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
13
checked on Oct 26, 2024
Page view(s)
418
checked on Nov 25, 2024
Download(s)
388
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.