Please use this identifier to cite or link to this item:
Title: Signal performance of DC-SQUIDs with respect to YBCO thin film deposition rate
Authors: Avcı, İlbeyi
Algül, Berrin Pınar
Akram, Rizwan
Bozbey, Ali
Tepe, Mustafa
Abukay, Doğan
Keywords: DC-SQUIDs
Deposition rate
Josephson junctions
YBCO thin films
Publisher: Elsevier Ltd.
Source: Avcı, İ., Algül, B. P., Akram, R., Bozbey, A., Tepe, M., and Abukay, D. (2009). Signal performance of DC-SQUIDs with respect to YBCO thin film deposition rate. Sensors and Actuators, A: Physical, 153(1), 84-88. doi:10.1016/j.sna.2009.04.013
Abstract: The signal performances of YBa2Cu3O7-δ (YBCO) direct current superconducting quantum interference devices (DC-SQUIDs) have been investigated as a function of the thin film structure affected by the growth process. YBCO thin films of 200 nm thicknesses were deposited by DC magnetron sputtering using different deposition rates between 1.0 nm/min and 2.0 nm/min onto 24° bicrystal SrTiO3 (STO) substrates. The thin film samples were subsequently analyzed by XRD and AFM in order to determine their crystalline structures and surface morphologies respectively. The 67 pH directly coupled DC-SQUIDs with 4 μm-wide bicrystal Josephson junctions were fabricated, and characterized with respect to their device performances. The variations in the critical current (Ic), the voltage modulation depth (ΔV) and the noise performance of DC-SQUIDs were reported. The SQUIDs having relatively low deposition rate of 1.0 nm/min was observed to have larger voltage modulation depth as well as higher critical current than that of the samples having larger rate of 2.0 nm/min. The better noise performances were observed as the film deposition rate decreases. The results were associated with the thin film structure and the SQUID characteristics.
ISSN: 0924-4247
Appears in Collections:Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2539.pdfMakale671.21 kBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Apr 5, 2024


checked on Mar 27, 2024

Page view(s)

checked on Apr 22, 2024


checked on Apr 22, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.