Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2271
Title: Dissipative hierarchies and resonance solitons for KP-II and MKP-II
Authors: Francisco, Meltem L. Y.
Lee, Jyh Hao
Pashaev, Oktay
Keywords: Solitons
Dissipative hierarchies
Hirota method
Kadomtsev-Petviashvili equation
Resonance solitons
Issue Date: Mar-2007
Publisher: Elsevier Ltd.
Source: Francisco, M. L. Y., Lee, J. H., and Pashaev, O. (2007). Dissipative hierarchies and resonance solitons for KP-II and MKP-II. Mathematics and Computers in Simulation, 74(4-5), 323-332. doi:10.1016/j.matcom.2006.10.017
Abstract: We show that dissipative solitons (dissipatons) of the second and the third members of SL(2,R) AKNS hierarchy give rise to the real solitons of KP-II, while for SL(2,R) Kaup-Newell hierarchy they give solitons of MKP-II. By the Hirota bilinear form for both flows, we find new bilinear system for these equations, and one- and two-soliton solutions. For special values of parameters our solutions show resonance behaviour with creation of four virtual solitons. We first time created four virtual soliton resonance solution for KP-II and established relations of it with degenerate four-soliton solution in the Hirota-Satsuma bilinear form for KP-II. Our approach allows one to interpret the resonance soliton as a composite object of two dissipative solitons in 1 + 1 dimensions.
URI: http://doi.org/10.1016/j.matcom.2006.10.017
http://hdl.handle.net/11147/2271
ISSN: 0378-4754
0378-4754
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2271.pdfMakale236.7 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

5
checked on Jun 21, 2022

WEB OF SCIENCETM
Citations

3
checked on Jun 21, 2022

Page view(s)

152
checked on Jul 4, 2022

Download(s)

66
checked on Jul 4, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.