Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2146
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Neslitürk, Ali İhsan | - |
dc.contributor.author | Aydın, Selçuk Han | - |
dc.contributor.author | Tezer, Münevver | - |
dc.date.accessioned | 2016-09-19T13:17:12Z | |
dc.date.available | 2016-09-19T13:17:12Z | |
dc.date.issued | 2008-10-20 | |
dc.identifier.citation | Neslitürk, A. İ., Aydın, S. H., and Tezer, M. (2008). Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 58(5), 551-572. doi: 10.1002/fld.1753 | en_US |
dc.identifier.issn | 0271-2091 | |
dc.identifier.issn | 0271-2091 | - |
dc.identifier.uri | http://doi.org/10.1002/fld.1753 | |
dc.identifier.uri | http://hdl.handle.net/11147/2146 | |
dc.description.abstract | We consider the Galerkin finite element method for the incompressible Navier-Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble functions. To find the bubble part of the solution, a two-level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier-Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc. | en_US |
dc.relation.ispartof | International Journal for Numerical Methods in Fluids | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Navier-Stokes equations | en_US |
dc.subject | Stabilizing subgrid | en_US |
dc.subject | Two-level finite element method | en_US |
dc.title | Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations | en_US |
dc.type | Article | en_US |
dc.authorid | TR1919 | en_US |
dc.institutionauthor | Neslitürk, Ali İhsan | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 58 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 551 | en_US |
dc.identifier.endpage | 572 | en_US |
dc.identifier.wos | WOS:000259855900004 | en_US |
dc.identifier.scopus | 2-s2.0-57849086834 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1002/fld.1753 | - |
dc.relation.doi | 10.1002/fld.1753 | en_US |
dc.coverage.doi | 10.1002/fld.1753 | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
11
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
12
checked on Nov 16, 2024
Page view(s)
262
checked on Nov 18, 2024
Download(s)
318
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.