Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2124
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tayfur, Gökmen | - |
dc.contributor.author | Singh, Vijay P. | - |
dc.date.accessioned | 2016-08-16T12:03:23Z | |
dc.date.available | 2016-08-16T12:03:23Z | |
dc.date.issued | 2006-12 | |
dc.identifier.citation | Tayfur, G., and Singh, V. P. (2006). ANN and fuzzy logic models for simulating event-based rainfall-runoff. Journal of Hydraulic Engineering, 132(12), 1321-1330. doi:10.1061/(ASCE)0733-9429(2006)132:12(1321) | en_US |
dc.identifier.issn | 0733-9429 | |
dc.identifier.issn | 0733-9429 | - |
dc.identifier.uri | https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1321) | |
dc.identifier.uri | http://hdl.handle.net/11147/2124 | |
dc.description.abstract | This study presents the development of artificial neural network (ANN) and fuzzy logic (FL) models for predicting event-based rainfall runoff and tests these models against the kinematic wave approximation (KWA). A three-layer feed-forward ANN was developed using the sigmoid function and the backpropagation algorithm. The FL model was developed employing the triangular fuzzy membership functions for the input and output variables. The fuzzy rules were inferred from the measured data. The measured event based rainfall-runoff peak discharge data from laboratory flume and experimental plots were satisfactorily predicted by the ANN, FL, and KWA models. Similarly, all the three models satisfactorily simulated event-based rainfall-runoff hydrographs from experimental plots with comparable error measures. ANN and FL models also satisfactorily simulated a measured hydrograph from a small watershed 8.44 km2 in area. The results provide insights into the adequacy of ANN and FL methods as well as their competitiveness against the KWA for simulating event-based rainfall-runoff processes. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Society of Civil Engineers (ASCE) | en_US |
dc.relation.ispartof | Journal of Hydraulic Engineering | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fuzzy sets | en_US |
dc.subject | Kinematic wave theory | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Rainfall | en_US |
dc.subject | Runoff | en_US |
dc.subject | Simulation | en_US |
dc.title | ANN and fuzzy logic models for simulating event-based rainfall-runoff | en_US |
dc.type | Article | en_US |
dc.authorid | TR2054 | en_US |
dc.institutionauthor | Tayfur, Gökmen | - |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 132 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 1321 | en_US |
dc.identifier.endpage | 1330 | en_US |
dc.identifier.wos | WOS:000242428800008 | en_US |
dc.identifier.scopus | 2-s2.0-33751081243 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1061/(ASCE)0733-9429(2006)132:12(1321) | - |
dc.relation.doi | 10.1061/(ASCE)0733-9429(2006)132:12(1321) | en_US |
dc.coverage.doi | 10.1061/(ASCE)0733-9429(2006)132:12(1321) | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosqualityttp | Top10% | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
120
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
100
checked on Nov 16, 2024
Page view(s)
9,082
checked on Nov 18, 2024
Download(s)
546
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.