Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2062
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbek, Mehmet Erdal-
dc.contributor.authorDelpha, Claude-
dc.contributor.authorDuhamel, Pierre-
dc.date.accessioned2016-08-08T08:29:40Z
dc.date.available2016-08-08T08:29:40Z
dc.date.issued2007
dc.identifier.citationÖzbek, M. E., Delpha, C., and Duhamel, P. (2007). Musical note and instrument classification with likelihood-frequency-time analysis and support vector machines. Paper presented at the 15th European Signal Processing Conference, EUSIPCO 2007, Poznan, Poland, 3-7 September (pp.941-945). Piscataway, N.J.: IEEEen_US
dc.identifier.issn2219-5491
dc.identifier.issn2219-5491-
dc.identifier.urihttp://hdl.handle.net/11147/2062
dc.description15th European Signal Processing Conference, EUSIPCO 2007; Poznan; Poland; 3 September 2007 through 7 September 2007en_US
dc.description.abstractIn this paper, we analyze the classification performance of a likelihood-frequency-time (LiFT) analysis designed for partial tracking and automatic transcription of music using support vector machines. The LiFT analysis is based on constant-Q filtering of signals with a filter-bank designed to filter 24 quarter-tone frequencies of an octave. Using the LiFT information, features are extracted from the isolated note samples and classification of instruments and notes is performed with linear, polynomial and radial basis function kernels. Correct classification ratios are obtained for 19 instrument and 36 notes.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof15th European Signal Processing Conference, EUSIPCO 2007en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInstrumentsen_US
dc.subjectAutomatic transcriptionen_US
dc.subjectClassification performanceen_US
dc.subjectCorrect classification ratiosen_US
dc.subjectLift analysisen_US
dc.subjectSignal processingen_US
dc.titleMusical note and instrument classification with likelihood-frequency-time analysis and support vector machinesen_US
dc.typeConference Objecten_US
dc.authoridTR107862en_US
dc.institutionauthorÖzbek, Mehmet Erdal-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.startpage941en_US
dc.identifier.endpage945en_US
dc.identifier.scopus2-s2.0-79953712402en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2062.pdfConference Paper153.59 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 15, 2024

Page view(s)

298
checked on Nov 18, 2024

Download(s)

98
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.