Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2011
Title: Soliton resonances for the MKP-II
Authors: Lee, Jiunhung
Pashaev, Oktay
Pashaev, Oktay
Izmir Institute of Technology. Mathematics
Keywords: Derivative reaction-diffusion system
Dissipative soliton
Hirota method
Modified Kadomtsev-Petviashvili equation
Soliton resonance
Issue Date: Jul-2005
Publisher: Pleiades Publishing
Source: Lee, J., and Pashaev, O. (2005). Soliton resonances for the MKP-II. Theoretical and Mathematical Physics, 144(1), 995-1003. doi:10.1007/s11232-005-0127-5
Abstract: Using the second flow (derivative reaction-diffusion system) and the third one of the dissipative SL(2, ℝ) Kaup-Newell hierarchy, we show that the product of two functions satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimensions with negative dispersion (MKP-II). We construct Hirota's bilinear representations for both flows and combine them as the bilinear system for the MKP-II. Using this bilinear form, we find one- and two-soliton solutions for the MKP-II. For special values of the parameters, our solution shows resonance behavior with the creation of four virtual solitons. Our approach allows interpreting the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.
URI: https://doi.org/10.1007/s11232-005-0127-5
http://hdl.handle.net/11147/2011
ISSN: 0040-5779
0040-5779
1573-9333
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2011.pdfConference Paper187.04 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

7
checked on Sep 18, 2021

WEB OF SCIENCETM
Citations

7
checked on Sep 18, 2021

Page view(s)

20
checked on Sep 23, 2021

Download(s)

26
checked on Sep 23, 2021

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.