Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2010
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeyhan, Abdullah Tuğrul-
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorKarakurt, Murat-
dc.contributor.authorTanoğlu, Metin-
dc.date.accessioned2016-07-28T13:30:32Z
dc.date.available2016-07-28T13:30:32Z
dc.date.issued2005-08
dc.identifier.citationSeyhan, A. T., Tayfur, G., Karakurt, M., and Tanoǧlu, M. (2005). Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Computational Materials Science, 34(1), 99-105. doi:10.1016/j.commatsci.2004.11.001en_US
dc.identifier.issn0927-0256
dc.identifier.issn0927-0256-
dc.identifier.urihttp://doi.org/10.1016/j.commatsci.2004.11.001
dc.identifier.urihttp://hdl.handle.net/11147/2010
dc.description.abstractA three layer feed forward artificial neural network (ANN) model having three input neurons, one output neuron and two hidden neurons was developed to predict the ply-lay up compressive strength of VARTM processed E-glass/ polyester composites. The composites were manufactured using fabric preforms consolidated with 0, 3 and 6 wt.% of thermoplastic binder. The learning of ANN was accomplished by a backpropagation algorithm. A good agreement between the measured and the predicted values was obtained. Testing of the model was done within low average error levels of 3.28%. Furthermore, the predictions of ANN model were compared with those obtained from a multi-linear regression (MLR) model. It was found that ANN model has better predictions than MLR model for the experimental data. Also, the ANN model was subjected to a sensitivity analysis to obtain its response. As a result, the ANN model was found to have an ability to yield a desired level of ply-lay up compressive strength values for the composites processed with the addition of the thermoplastic binder.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofComputational Materials Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectCompressive strengthen_US
dc.subjectMulti-linear regression (MLR)en_US
dc.subjectPolymer compositesen_US
dc.subjectPreforming binderen_US
dc.subjectNeural networksen_US
dc.titleArtificial neural network (ANN) prediction of compressive strength of VARTM processed polymer compositesen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.authoridTR30837en_US
dc.institutionauthorSeyhan, A. Tuğrul-
dc.institutionauthorTayfur, Gökmen-
dc.institutionauthorKarakurt, Murat-
dc.institutionauthorTanoğlu, Metin-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume34en_US
dc.identifier.issue1en_US
dc.identifier.startpage99en_US
dc.identifier.endpage105en_US
dc.identifier.wosWOS:000228943700009en_US
dc.identifier.scopus2-s2.0-17444388869en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.commatsci.2004.11.001-
dc.relation.doi10.1016/j.commatsci.2004.11.001en_US
dc.coverage.doi10.1016/j.commatsci.2004.11.001en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2010.pdfMakale168.25 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

58
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

49
checked on Nov 16, 2024

Page view(s)

9,268
checked on Nov 18, 2024

Download(s)

418
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.