Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/1967
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPashaev, Oktay-
dc.contributor.authorTanoğlu, Gamze-
dc.date.accessioned2016-07-22T08:23:29Z
dc.date.available2016-07-22T08:23:29Z
dc.date.issued2005-10
dc.identifier.citationPashaev, O., and Tanoǧlu, G. (2005). Vector shock soliton and the Hirota bilinear method. Chaos, Solitons & Fractals, 26(1), 95-105. doi:10.1016/j.chaos.2004.12.021en_US
dc.identifier.issn0960-0779
dc.identifier.issn0960-0779-
dc.identifier.urihttp://doi.org/10.1016/j.chaos.2004.12.021
dc.identifier.urihttp://hdl.handle.net/11147/1967
dc.description.abstractThe Hirota bilinear method is applied to find an exact shock soliton solution of the system reaction-diffusion equations for n-component vector order parameter, with the reaction part in form of the third order polynomial, determined by three distinct constant vectors. The bilinear representation is derived by extracting one of the vector roots (unstable in general), which allows us reduce the cubic nonlinearity to a quadratic one. The vector shock soliton solution, implementing transition between other two roots, as a fixed points of the potential from continuum set of the values, is constructed in a simple way. In our approach, the velocity of soliton is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Shock solitons for extensions of the model, by including the second order time derivative term and the nonlinear transport term are derived. Numerical solutions illustrating generation of solitary wave from initial step function, depending of the polynomial roots are given.en_US
dc.description.sponsorship2002-IYTE-24 and 2002-IYTE-25en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematical modelsen_US
dc.subjectNonlinear equationsen_US
dc.subjectPerturbation techniquesen_US
dc.subjectProblem solvingen_US
dc.subjectHirota bilinear methodsen_US
dc.titleVector shock soliton and the Hirota bilinear methoden_US
dc.typeArticleen_US
dc.authoridTR57865en_US
dc.authoridTR103234en_US
dc.institutionauthorPashaev, Oktay-
dc.institutionauthorTanoğlu, Gamze-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume26en_US
dc.identifier.issue1en_US
dc.identifier.startpage95en_US
dc.identifier.endpage105en_US
dc.identifier.wosWOS:000229353000013en_US
dc.identifier.scopus2-s2.0-17644427366en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.chaos.2004.12.021-
dc.relation.doi10.1016/j.chaos.2004.12.021en_US
dc.coverage.doi10.1016/j.chaos.2004.12.021en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1967.pdfMakale202.85 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

27
checked on Nov 16, 2024

Page view(s)

2,150
checked on Nov 18, 2024

Download(s)

1,106
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.