Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/1952
Title: | Predicting Longitudinal Dispersion Coefficient in Natural Streams by Artificial Neural Network | Authors: | Tayfur, Gökmen Singh, Vijay Pratap Ratap |
Keywords: | Coefficients Neural networks Physical properties River flow Simulation Streamflow |
Publisher: | American Society of Civil Engineers (ASCE) | Source: | Tayfur, G., and Singh, V.P. (2005). Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. Journal of Hydraulic Engineering, 131(11). 991-1000. doi:10.1061/(ASCE)0733-9429(2005)131:11(991) | Abstract: | An-artificial neural network (ANN) model was developed to predict the longitudinal dispersion coefficient in natural streams and rivers. The hydraulic variables [flow discharge (Q), flow depth (H), flow velocity (U), shear velocity (u*), and relative shear velocity (U/ u*)] and geometric characteristics [channel width (B), channel sinuosity (σ), and channel shape parameter (β)] constituted inputs to the ANN model, whereas the dispersion coefficient (Kx) was the target model output. The model was trained and tested using 71 data sets of hydraulic and geometric parameters and dispersion coefficients measured on 29 streams and rivers in the United States. The training of the ANN model was accomplished with an explained variance of 90% of the dispersion coefficient. The dispersion coefficient values predicted by the ANN model satisfactorily compared with the measured values corresponding to different hydraulic and geometric characteristics. The predicted values were also compared with those predicted using several equations that have been suggested in the literature and it was found that the ANN model was superior in predicting the dispersion coefficient. The results of sensitivity analysis indicated that the Q data alone would be sufficient for predicting more frequently occurring low values of the dispersion coefficient (Kx < 100 m2/s). For narrower channels (B/H < 50) using only U/u* data would be sufficient to predict the coefficient. If β and σ were used along with the flow variables, the prediction capability of the ANN model would be significantly improved. Journal of Hydraulic Engineering. | URI: | http://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(991) http://hdl.handle.net/11147/1952 |
ISSN: | 0733-9429 |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
100
checked on Dec 27, 2024
WEB OF SCIENCETM
Citations
27
checked on Dec 28, 2024
Page view(s)
246
checked on Dec 30, 2024
Download(s)
364
checked on Dec 30, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.