Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15701
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSildir, H.-
dc.contributor.authorYalcin, D.-
dc.contributor.authorTuncer, B.-
dc.contributor.authorDeliismail, O.-
dc.contributor.authorLeblebici, M.E.-
dc.date.accessioned2025-06-26T20:20:34Z-
dc.date.available2025-06-26T20:20:34Z-
dc.date.issued2025-
dc.identifier.issn0263-8762-
dc.identifier.urihttps://doi.org/10.1016/j.cherd.2025.05.046-
dc.identifier.urihttps://hdl.handle.net/11147/15701-
dc.description.abstractChemical process data is usually not directly valorized in pure machine learning predictive models due to limited data availability. This limitation often caused from high sensor costs, data variety, and veracity issues. In response, this study proposes a novel formulation based on mixed-integer linear programming (MILP), called Approximated Deep Learning (ADL), to overcome these limitations and enable accurate modeling under data scarcity. The ADL simultaneously performs input selection, outlier filtering, and training of deep learning architectures within a single-level optimization problem. The method approximates the nonlinear and nonconvex components of traditional deep learning models in the mixed-integer domain through sophisticated reformulations, achieving a pseudo-global solution. A key feature of ADL is the integration of sensor pricing as a regularization mechanism, which promotes cost-efficient soft sensor design without compromising predictive performance. The proposed framework is validated on a publicly available bubble column dataset and benchmarked against four conventional deep learning methods. Results show that ADL achieves superior test accuracy with more than 50% reduction in input space, drastically reducing sensor cost. Furthermore, the optimized architecture is a high-quality initial guess for transfer learning on larger datasets. Overall, the method offers a practical and economically viable solution for data-driven chemical process modeling. © 2025 Institution of Chemical Engineersen_US
dc.language.isoenen_US
dc.publisherInstitution of Chemical Engineersen_US
dc.relation.ispartofChemical Engineering Research and Designen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectGlobal Optimalityen_US
dc.subjectMixed-Integer Linear Programmingen_US
dc.subjectMixed-Integer Nonlinear Programmingen_US
dc.subjectSoft Sensoren_US
dc.titleTowards Facile Deep Learning Architectures for Chemical Processes: Simultaneous Pseudo-Global Training and Economic Synthesisen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume219en_US
dc.identifier.startpage322en_US
dc.identifier.endpage332en_US
dc.identifier.scopus2-s2.0-105008210812-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.cherd.2025.05.046-
dc.authorscopusid55005950400-
dc.authorscopusid57205128907-
dc.authorscopusid59529777700-
dc.authorscopusid57191163671-
dc.authorscopusid55544552100-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.