Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15628
Title: Scalable Growth of Optically Uniform Mows2 Alloys by Sulfurization of Ultrathin Mo/W Stacks
Authors: Panasci, Salvatore Ethan
Schiliro, Emanuela
Koos, Antal
Kutlu, Tayfun
Sahin, Hasan
Roccaforte, Fabrizio
Giannazzo, Filippo
Keywords: Mos2
Ws2
Moxw1-Xs2 Ternary Compounds
Sulfurization
Photoluminescence
Publisher: Elsevier Sci Ltd
Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) ternary alloys, such as MoxW1-xS2, are very appealing for the possibility of continuously tuning their excitonic bandgap by the composition. However, the deposition of ultra-thin (monolayers or few-layers) alloys with laterally uniform composition on large area represents a main challenge of currently adopted synthesis methods. In this work, we demonstrated the growth of highly uniform Mo0.5W0.5S2 bi-layers on cm2 size SiO2/Si substrates by employing a simple and scalable approach, i.e. the sulfurization of a pre-deposited ultra-thin Mo/W stack at a temperature of 700 degrees C. Comparison of Mo(1.2 nm)/SiO2, W(1.2 nm)/SiO2, and Mo(1.2 nm)/W(1.2 nm)/SiO2 samples after identical sulfurization conditions revealed very different results, i.e. (i) a uniform monolayer (1L) MoS2 film, (ii) separated multilayer WS2 islands, and (iii) a uniform bilayer (2L) Mo0.5W0.5S2 film. This indicates how W surface diffusion and coalescence on SiO2 surface plays a main role in WS2 islands formation, whereas the reaction between S vapour with Mo films or Mo/W stacks represents the dominant mechanism for the formation of MoS2 and the MoWS2 alloy. Micro-photoluminescence (PL) mapping of the obtained 2L-Mo0.5W0.5S2 film showed an excellent uniformity of light emission on large area with an exciton peak at 1.97 eV, significantly blue-shifted with respect to PL emission of 1L-MoS2 at 1.86 eV. Such highly uniform optical properties make the grown MoWS2 alloy very promising for optoelectronic applications.
URI: https://doi.org/10.1016/j.mssp.2025.109648
ISSN: 1369-8001
1873-4081
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.