Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15547
Title: | Design and Performance of Sioc Foam-Silica Aerogel Composites for Hot and Cold Thermal Management Applications |
Authors: | Icin, O. Vakifahmetoglu, C. |
Keywords: | Aerogels Cold Insulation Composite Foam Hot Insulation Silica Sioc |
Publisher: | Elsevier Ltd |
Abstract: | This study focuses on the fabrication of monolithic preceramic polymer-derived ceramic (SiOC) foam-silica aerogel composites by filling the open cells of ceramic foam with a silica aerogel solution using the sol-gel technique. The effects of different drying techniques (ambient pressure vs CO2 supercritical drying) and surface modification agents, including trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ), are comprehensively investigated. These factors are analyzed for their influence on the composites' morphology, porosity, chemical structure, and thermal insulation performance. The drying technique and surface modification agents are found to play a critical role in achieving a high filling ratio of silica aerogel within the composites. Pure silica aerogels exhibit specific surface areas (SSAs) reaching ∼1120 m2.g-1, while the SiOC foam-silica aerogel composites demonstrate SSAs of 385–440 m2.g-1. Nearly all samples achieve a total porosity of ∼93 vol%. Surface modification effectively tailors the surface properties, imparting hydrophobicity with a water contact angle of 133°. Thermal conductivity at room temperature ranges between 38 and 43 mW·m-1·K-1. The potential applications of these SiOC foam-silica aerogel composites as thermal insulators are assessed under extreme thermal conditions. For instance, a 14 mm thick composite has a temperature of -27 °C when subjected to a cold source at -78 °C. Instead, when exposed directly to a butane flame (∼1200 °C), the backside of the composite recorded only ∼57 °C. © 2025 Elsevier Ltd and Techna Group S.r.l. |
URI: | https://doi.org/10.1016/j.ceramint.2025.03.167 https://hdl.handle.net/11147/15547 |
ISSN: | 0272-8842 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Show full item record
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.