Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15521
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKivanc, Sercan-
dc.contributor.authorBeykal, Burcu-
dc.contributor.authorDeliismail, Ozgun-
dc.contributor.authorSildir, Hasan-
dc.date.accessioned2025-04-25T20:33:44Z-
dc.date.available2025-04-25T20:33:44Z-
dc.date.issued2025-
dc.identifier.issn0098-1354-
dc.identifier.issn1873-4375-
dc.identifier.urihttps://doi.org/10.1016/j.compchemeng.2025.109087-
dc.identifier.urihttps://hdl.handle.net/11147/15521-
dc.descriptionBeykal, Burcu/0000-0002-6967-6661en_US
dc.description.abstractThis study offers a realistic representation of system dynamics which accounts for light intensity, biomass, substrate, and nitrogen concentration, by employing stochastic programming techniques to account for spatial and temporal variations for algae growth. The optimization task focuses on lipid productivity and selectivity, which are crucial factors in the context of algal biofuel production. Different scenarios from likely and unlikely cases of model parameters were evaluated. Optimal initial conditions for key variables such as nitrogen, substrate, light, biomass, lipid, and surface light intensity are calculated, considering the uncertainty of the parameters as well as other governing equations. The results show that a remarkable 11.18% increase in lipid productivity compared to a reference scenario. Furthermore, in the stochastic case, our results highlight that uncertainty has a disproportionately large effect on biomass in comparison to lipid concentration, providing valuable insights into the behavior of the system under varying conditions. This provides a comprehensive exploration of the parameter uncertainty on lipid productivity and algal growth.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSustainabilityen_US
dc.subjectMicroalgal Processen_US
dc.subjectDynamic Optimizationen_US
dc.subjectStochastic Programmingen_US
dc.subjectSpatiotemporal Modelingen_US
dc.titleDynamic and Stochastic Optimization of Algae Cultivation Processen_US
dc.typeArticleen_US
dc.authoridBeykal, Burcu/0000-0002-6967-6661-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume198en_US
dc.identifier.wosWOS:001447895600001-
dc.identifier.scopus2-s2.0-86000603823-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.compchemeng.2025.109087-
dc.authorscopusid59294447800-
dc.authorscopusid55808082100-
dc.authorscopusid57191163671-
dc.authorscopusid55005950400-
dc.authorwosidBeykal, Burcu/Iys-7913-2023-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.