Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15422
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKyaligonza, S.-
dc.contributor.authorCetkin, E.-
dc.date.accessioned2025-03-25T22:54:40Z-
dc.date.available2025-03-25T22:54:40Z-
dc.date.issued2021-
dc.identifier.issn2602-439X-
dc.identifier.urihttps://doi.org/10.20508/ijsmartgrid.v5i4.218.g171-
dc.identifier.urihttps://hdl.handle.net/11147/15422-
dc.description.abstractThe electrical conversion efficiency of photovoltaic cells from solar radiation heavily depends on the cell temperature. Here we propose a novel thermal management strategy to keep the cell temperature in the same order to attain maximum efficiency. The comparative study presented is based on four solar module configurations: a conventional photovoltaic module (PVT module), a conventional module with PCM layer underneath (PVT/PCM-I), a configuration where fins embedded into PCM (PVT/PCM-II), and configuration where the bottom of the PCM layer in PVT/PCM-II was cooled via convection (PVT/PCM-III). The developed 3D numerical model is solved via ANSYS software involving the solar ray tracing radiation model for incident solar radiations and a transient melting-solidification thermo-fluid model to cater for PCM phase transition. Results from the numerical model were validated via a comparison of experimentally studied results presented in the literature. After 120 minutes, results show that the conversion efficiency of PV cells becomes 16.84%, 18.65%, 18.83%, and 18.98% after 120 minutes for PVT module, PVT/PCM-I, PVT/PCM-II, and PVT/PCM-III with an inlet velocity of 3m/s, respectively. For the respective configurations, the specific electrical power per unit area produced reaches 75.30W/m2, 83.39W/m2, 84.19W/m2, and 89.42W/m2 for solar radiation of 540W/m2 and 26°C ambient temperature. Results reveal that a 5 mm increase in the fin height for PVT/PCM-II results in a 0.22% increase in efficiency while a 0.5m/s increase in the inlet velocity of the cooling air for PVT/PCM-III results in about 0.06% increase in efficiency. © 2021, ilhami Colak. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherilhami Colaken_US
dc.relation.ispartofInternational Journal of Smart Griden_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConversion Efficiencyen_US
dc.subjectPhase Change Materialsen_US
dc.subjectPhotovoltaic Moduleen_US
dc.subjectThermal Managementen_US
dc.titlePhotovoltaic System Efficiency Enhancement With Thermal Management: Phase Changing Materials (pcm) With High Conductivity Insertsen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume5en_US
dc.identifier.issue4en_US
dc.identifier.startpage138en_US
dc.identifier.endpage148en_US
dc.identifier.scopus2-s2.0-85129053407-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.20508/ijsmartgrid.v5i4.218.g171-
dc.authorscopusid59533256500-
dc.authorscopusid36155143800-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Mar 29, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.