Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15391
Title: | A Glucuronoxylan-Based Bio-Ink Development: Characterization and Application | Authors: | Yıldırım, Ömer Arslan Yıldız, Ahu |
Publisher: | Wiley | Abstract: | Bioprinting is a trending technique that enables the fabrication of threedimensional (3D) constructs in designed shapes and with desired properties. Bioinks are one of the most significant components of bioprinting and the successful fabrication of 3D bioprinted constructs mostly depends on the features of bioinks that would be used. New generation bioinks that are soft and viscous enough, printable under low pressure, stable in cell culture, and have fast gelation mechanisms are ideal to be used in current bioprinting techniques. Hydrocolloids have said features and have similar properties to native ECM structures. Hence bioinks that are developed from hydrocolloids can be utilized for mimicking of ECM structure of soft tissues. Polysaccharidebased hydrocolloids are ideal bioink candidates with their high waterholding capacity and biocompatibility. Here, a glucuronoxylanbased newgeneration bioink was developed, and its printability was evaluated for 3D bioprinting applications. The glucuronoxylanbased hydrocolloid was obtained by water extraction of quince seeds and its utilization in bioprinting was investigated. Bioink characterization was done by FTIR and mechanical analysis. Bioprinting parameters were optimized assessing uniformity, pore factor, and shape fidelity. Then, the characterization of bioprinted constructs was performed by pore angle measurement, waterholding capacity analysis, protein adsorption, and cell viability assays. Bioprinted structures have high mechanical strength, suitable protein adsorption behavior, and waterholding capacity as high as 20fold of its own weight, which is higher than other hydrogels that were used in soft tissue engineering. Moreover, the cell viability results of fibroblast cells in the bioink were high for longterm culture. In conclusion, findings show that the developed glucuronoxylanbased bioink is a biocompatible and promising bioink material for further tissue engineering applications. | URI: | https://hdl.handle.net/11147/15391 | ISSN: | 2211-5463 |
Appears in Collections: | Bioengineering / Biyomühendislik WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.