Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15371
Title: | Euler-Euler Numerical Model for Transport Phenomena Modeling in a Natural Circulation Loop Operated by Nanofluids | Authors: | Kamenik, Blaz Vovk, Nejc Elcioglu, Elif Begum Sezgin, Firat Ozyurt, Erdem Karadeniz, Ziya Haktan Ravnik, Jure |
Keywords: | Cfd Euler-Euler Multiphase Flow Nanofluid Natural Circulation Loop Thermophoresis |
Publisher: | Springer/plenum Publishers | Abstract: | This paper explores a computational approach to model multiphase heat transfer and fluid flow in a natural circulation loop utilizing nanofluids. We propose and implement an Euler-Euler framework in a CFD environment, incorporating an innovative boundary condition to preserve mass conservation during thermophoretic particle flux. The model's accuracy is verified through a one-dimensional example, by comparing results against both an Euler-Lagrange model and an in-house finite volume solution. Experimental validation is conducted with aluminum oxide nanofluids at varying nanoparticle concentrations. We prepared the nanofluids and measured their thermophysical properties up to 60 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60<^>\circ$$\end{document}C. We assess the thermal performance of the nanofluid in natural circulation loop at different heating powers via experiment and numerical simulations. The findings reveal that the heat transfer enhancement offered by the nanofluid is modest, with minimal differences observed between the proposed Euler-Euler approach and a simpler single-phase model. The results underscore that while the Euler-Euler model offers detailed particle-fluid interactions, its practical thermal advantage is limited in this context. | URI: | https://doi.org/10.1007/s10765-024-03497-y https://hdl.handle.net/11147/15371 |
ISSN: | 0195-928X 1572-9567 |
Appears in Collections: | WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.