Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15327
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soltan Mohammadi, H. | - |
dc.contributor.author | Ringel, L.M. | - |
dc.contributor.author | Bott, C. | - |
dc.contributor.author | Erol, Selçuk | - |
dc.contributor.author | Bayer, P. | - |
dc.date.accessioned | 2025-02-05T09:52:48Z | - |
dc.date.available | 2025-02-05T09:52:48Z | - |
dc.date.issued | 2025 | - |
dc.identifier.issn | 1359-4311 | - |
dc.identifier.uri | https://doi.org/10.1016/j.applthermaleng.2024.125210 | - |
dc.identifier.uri | https://hdl.handle.net/11147/15327 | - |
dc.description.abstract | Accurate temperature prediction is crucial for optimizing the performance of borehole heat exchanger (BHE) fields. This study introduces an efficient Bayesian approach for improving the forecast of temperature changes in the ground caused by the operation of BHEs. The framework addresses the complexities of multi-layer subsurface structures and groundwater flow. By utilizing an affine invariant ensemble sampler, the framework estimates the distribution of key parameters, including heat extraction rate, thermal conductivity, and Darcy velocity. Validation of the proposed methodology is conducted through a synthetic case involving four active and one inactive BHE over five years, using monthly temperature changes around BHEs from a detailed numerical model as a reference. The moving finite line source model with anisotropy is employed as the forward model for efficient temperature approximations. Applying the proposed methodology at a monthly resolution for less than three years reduces uncertainty in long-term predictions by over 90%. Additionally, it enhances the applicability of the employed analytical forward model in real field conditions. Thus, this advancement offers a robust tool for stochastic prediction of thermal behavior and decision-making in BHE systems, particularly in scenarios with complex subsurface conditions and limited prior knowledge. © 2024 The Author(s) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Applied Thermal Engineering | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bayesian Inference | en_US |
dc.subject | Closed-Loop Geothermal Systems | en_US |
dc.subject | Data Assimilation | en_US |
dc.subject | Heat Transfer | en_US |
dc.subject | Stochastic Modeling | en_US |
dc.title | Bayesian Uncertainty Quantification in Temperature Simulation of Borehole Heat Exchanger Fields for Geothermal Energy Supply | en_US |
dc.type | Article | en_US |
dc.department | İzmir Institute of Technology. Energy Systems Engineering | en_US |
dc.identifier.volume | 265 | en_US |
dc.identifier.scopus | 2-s2.0-85215868368 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.applthermaleng.2024.125210 | - |
dc.authorscopusid | 57216583678 | - |
dc.authorscopusid | 57209833077 | - |
dc.authorscopusid | 57202385964 | - |
dc.authorscopusid | 55792536000 | - |
dc.authorscopusid | 56219701500 | - |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.dept | 03.06. Department of Energy Systems Engineering | - |
Appears in Collections: | Energy Systems Engineering / Enerji Sistemleri Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Apr 12, 2025
Page view(s)
64
checked on Apr 14, 2025
Download(s)
2
checked on Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.