Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoltan Mohammadi, H.-
dc.contributor.authorRingel, L.M.-
dc.contributor.authorBott, C.-
dc.contributor.authorErol, Selçuk-
dc.contributor.authorBayer, P.-
dc.date.accessioned2025-02-05T09:52:48Z-
dc.date.available2025-02-05T09:52:48Z-
dc.date.issued2025-
dc.identifier.issn1359-4311-
dc.identifier.urihttps://doi.org/10.1016/j.applthermaleng.2024.125210-
dc.identifier.urihttps://hdl.handle.net/11147/15327-
dc.description.abstractAccurate temperature prediction is crucial for optimizing the performance of borehole heat exchanger (BHE) fields. This study introduces an efficient Bayesian approach for improving the forecast of temperature changes in the ground caused by the operation of BHEs. The framework addresses the complexities of multi-layer subsurface structures and groundwater flow. By utilizing an affine invariant ensemble sampler, the framework estimates the distribution of key parameters, including heat extraction rate, thermal conductivity, and Darcy velocity. Validation of the proposed methodology is conducted through a synthetic case involving four active and one inactive BHE over five years, using monthly temperature changes around BHEs from a detailed numerical model as a reference. The moving finite line source model with anisotropy is employed as the forward model for efficient temperature approximations. Applying the proposed methodology at a monthly resolution for less than three years reduces uncertainty in long-term predictions by over 90%. Additionally, it enhances the applicability of the employed analytical forward model in real field conditions. Thus, this advancement offers a robust tool for stochastic prediction of thermal behavior and decision-making in BHE systems, particularly in scenarios with complex subsurface conditions and limited prior knowledge. © 2024 The Author(s)en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBayesian Inferenceen_US
dc.subjectClosed-Loop Geothermal Systemsen_US
dc.subjectData Assimilationen_US
dc.subjectHeat Transferen_US
dc.subjectStochastic Modelingen_US
dc.titleBayesian Uncertainty Quantification in Temperature Simulation of Borehole Heat Exchanger Fields for Geothermal Energy Supplyen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technology. Energy Systems Engineeringen_US
dc.identifier.volume265en_US
dc.identifier.scopus2-s2.0-85215868368-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.applthermaleng.2024.125210-
dc.authorscopusid57216583678-
dc.authorscopusid57209833077-
dc.authorscopusid57202385964-
dc.authorscopusid55792536000-
dc.authorscopusid56219701500-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept03.06. Department of Energy Systems Engineering-
Appears in Collections:Energy Systems Engineering / Enerji Sistemleri Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
15327.pdf14.2 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 12, 2025

Page view(s)

64
checked on Apr 14, 2025

Download(s)

2
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.