Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYarimca, Gulsah-
dc.contributor.authorJensen, Anders Christian Solberg-
dc.contributor.authorCetkin, Erdal-
dc.date.accessioned2025-02-05T09:48:48Z-
dc.date.available2025-02-05T09:48:48Z-
dc.date.issued2025-
dc.identifier.issn0013-4651-
dc.identifier.issn1945-7111-
dc.identifier.urihttps://doi.org/10.1149/1945-7111/ada73e-
dc.identifier.urihttps://hdl.handle.net/11147/15310-
dc.descriptionCetkin, Erdal/0000-0003-3686-0208en_US
dc.description.abstractBatteries have gained significant attention due to their numerous advantages in applications such as electric vehicles. One of the factors limiting industry adoption is the aging of batteries. The characteristics of battery aging vary depending on many factors such as battery type, electrochemical reactions and operating conditions. Here we document the comparison of semi-empirical aging models (SEM), highlighting limitations and challenges. In addition, four SEMs are proposed. The usability and compatibility of these models are evaluated using experimental data from various sources including the Horizon 2020 Helios Project. The optimized parameters of each model are documented via linear regression and genetic algorithms. The results show that the genetic algorithm approach provides higher accuracy in comparison to the linear regression. The documented SEMs reveal better prediction performance than the literature of calendar obsolescence with SEM-3 and 7 performing particularly well in predicting capacity loss for the Helios dataset with low errors, i.e. 0.43 and 0.79 RMSE, respectively. The range of RMSE values for model predictions across all the datasets ranges from 0.196 to 3.903. This study aims to document the accuracy of SEMs both from the literature and proposed in the paper relative to battery ageing data from distinct sources.en_US
dc.description.sponsorshipgreenlabsDK [963646, 64021-1058]; European Unionen_US
dc.description.sponsorshipThis work is fulfilled within the framework of the HELIOS project which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.963646. DTI acknowledges the Fast Charge lab project funded by the greenlabsDK program under grant number 64021-1058.en_US
dc.language.isoenen_US
dc.publisherElectrochemical Soc incen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectric Vehiclesen_US
dc.subjectBattery Agingen_US
dc.subjectBattery Aging Modelsen_US
dc.subjectCalendar Agingen_US
dc.titleHigh Accuracy and Applicability Battery Aging Models for Electric Vehicle Applicationsen_US
dc.typeArticleen_US
dc.authoridCetkin, Erdal/0000-0003-3686-0208-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume172en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:001397518000001-
dc.identifier.scopus2-s2.0-85215255368-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1149/1945-7111/ada73e-
dc.authorscopusid58182889700-
dc.authorscopusid59517208800-
dc.authorscopusid36155143800-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

8
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.