Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15285
Title: | The Spheroidization Behavior of Low Alloy White Cast Iron and Its Effect on Impact Toughness and Wear Resistance | Authors: | Camkerten, Ruziye Davut, Kemal Yilmaz, Tolga Nalcaci, Burak Erdogan, Mehmet |
Keywords: | Spheroidization Process Window Divorced Eutectoid Transformation (Det) White Cast Iron Impact Toughness Wear Performance |
Publisher: | Elsevier Science Sa | Abstract: | The effect of spheroidization on impact toughness and wear resistance, together with the spheroidization kinetics of a low alloy white cast iron (LAWCI) have been studied. Spheroidization process was carried out using two different routes; intercritical annealing and subcritical annealing both of which were followed by furnace cooling to room temperature. Both routes involve a process window, which is determined by holding time and temperature. For the intercritical annealing the spheroidization window is significantly shorter (0.5-3 h) than the conventional subcritical spheroidization (6 - 12 h); and that process window narrows with increasing intercritical annealing temperature. The intercritical spheroidization involves 3 distinct stages; (i) partial, followed by (ii) fully spheroidization of lamellar pearlitic matrix by divorced eutectoid transformation (DET); and (iii) partially spheroidization by pearlitic structure formation in previous fully spheroidized region. The end of third stage produces almost fully pearlitic matrix, which is coarser than the as-cast condition. In case of subcritical spheroidization, the process window opens after about 6 hours and the size of spherical carbides gets larger with time. The as-cast LAWCI having a microstructure composed of eutectic carbide network and pearlite matrix exhibits and impact toughness of 4.6 J. Spheroidization process not only changes the lamellar pearlitic structure into spheroidized carbides but also slightly reduces the amount of eutectic carbides. Those microstructural changes greatly improve the impact toughness of LAWCI up to 11.8 J; whereas some decrease in the wear resistance. For spheroidized LAWCI, mean diameter of carbides (D), interparticle spacing of carbides (s), and number of carbides per area (n) seems to be important microstructural variations to determine the impact toughness and wear properties. Taking properties of the current material into consideration, spheroidized white cast irons may be a viable alternative material for industrial applications, offering a trade-off between wear resistance and toughness. | URI: | https://doi.org/10.1016/j.jallcom.2024.178373 https://hdl.handle.net/11147/15285 |
ISSN: | 0925-8388 1873-4669 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.