Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15204
Title: | Bond-Based Peridynamic Fatigue Analysis of Ductile Materials With Neuber's Plasticity Correction | Authors: | Altay, Ugur Dorduncu, Mehmet Kadioglu, Suat Madenci, Erdogan |
Keywords: | Peridynamics Plasticity Neuber's rule Fatigue Crack Stop hole |
Publisher: | Springer | Abstract: | This study introduces an approach for performing bond-based (BB) peridynamic (PD) fatigue analysis of ductile materials. Existing BB PD fatigue models do not account for the effect of plastic deformation. The current approach addresses this by incorporating Neuber's plasticity correction concept into the fatigue model. Neuber's correction adjusts the stress and strain predictions of the PD elastic solution to account for local plastic deformation around crack tips. The PD fatigue simulations demonstrate the effectiveness of this method and improvements in fatigue life predictions by considering local plasticity effects. The numerical results first examine the response of a ductile plate without a crack under quasi-static monotonic loading. Subsequently, specimens exhibiting Mode I and mixed-mode crack propagation paths due to cyclic loading are analyzed. The PD predictions accurately capture the test data. Additionally, the model specifically investigates the effect of a stop hole on fatigue life. | URI: | https://doi.org/10.1007/s00366-024-02092-x https://hdl.handle.net/11147/15204 |
ISSN: | 0177-0667 1435-5663 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.