Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15191
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdogmus, Nesli-
dc.date.accessioned2024-12-25T20:49:23Z-
dc.date.available2024-12-25T20:49:23Z-
dc.date.issued2024-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2024.3512852-
dc.identifier.urihttps://hdl.handle.net/11147/15191-
dc.description.abstractEstimating the direction in which the ridges and valleys of the fingerprint pattern are aligned often serves as a pivotal first step in fingerprint recognition systems. The ridge orientation map is a fundamental reference for subsequent processing stages, such as image enhancement, feature extraction, and matching. Therefore, its accuracy is essential to achieve high recognition rates. Ridge orientation estimation entails a regression problem since the task is to estimate an angle between 0 degrees and 180 degrees for each sub-region in the fingerprint image. However, the majority of the approaches in the literature pivot towards framing this regression task as a classification problem. This paper systematically analyzes the regression via classification methodology for fingerprint orientation estimation, exploring various discretization and encoding strategies. Specifically, we examine single and multiple discretization schemes designed to ensure that resulting bins maintain uniform length or uniform probability or are allocated randomly, paired with one-hot, ordinal, and cyclic encoding techniques. Our experiments are conducted on the FOE-TEST database from FVC-onGoing, the sole publicly available fingerprint orientation dataset. The findings highlight the efficacy of cyclic encoding over the one-hot encoding prevalent in prior research, while equal-length and equal-probability discretization strategies yield comparable results.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiye, TUBITAK ARDEB 1002 Programme [122E418]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkiye, TUBITAK ARDEB 1002 Programme, under Grant 122E418.en_US
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFingerprint recognitionen_US
dc.subjectEstimationen_US
dc.subjectEncodingen_US
dc.subjectImage matchingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectTrainingen_US
dc.subjectSmoothing methodsen_US
dc.subjectPredictive modelsen_US
dc.subjectFace recognitionen_US
dc.subjectDatabasesen_US
dc.subjectCyclic data regressionen_US
dc.subjectfingerprint orientation estimationen_US
dc.titleRegression Via Classification for Fingerprint Orientation Estimationen_US
dc.typeArticleen_US
dc.institutionauthorErdogmus, Nesli-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume12en_US
dc.identifier.startpage184607en_US
dc.identifier.endpage184618en_US
dc.identifier.wosWOS:001377296900031-
dc.identifier.scopus2-s2.0-85212151839-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ACCESS.2024.3512852-
dc.authorscopusid35746019000-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

14
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.